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Abstract Understanding the chemistry and physics of polymer systems challenges
scientists from a wide spectrum of research areas, ranging from polymer science to
molecular electronic structure theory. One of the characteristic features of polymer
systems is that their physics involve a multitude of different length and time scales,
which generally render the determination of their structure and physical properties on a
detailed level computationally exhaustive. To overcome this difficulty, novel field-the-
oretic methodologies based on the mean field approximation have emerged recently
and have proven to deliver useful results in the calculation of mesoscopic polymer
models in the regime of high monomer concentrations. In this review we demonstrate
that the field-theoretic approach is not only an useful formalism for treating highly
concentrated polymer systems on the mesoscopic level of description, but that it is also
a promising theoretical tool, to solve the multiscale problems arising in the calculation
of physical properties of a wide variety of neutral and charged polymer materials. To
this end, we show that the field-theoretic approach possesses the advantageous prop-
erty to enable the treatment of all levels of description, spanning from the quantum
to the continuum scale, within an unified theoretical framework. On the example of
the coupling of the mesoscopic and continuum scale, we show that this specific fea-
ture constitutes a crucial advantage of field-theoretic approaches with regard to cur-
rent state-of-the-art particle-based simulation methodologies for connecting different
levels of description. Another major benefit relates to their favorable approximation
characteristics, which permit to devise efficient approximation strategies for evaluating
sophisticated polymer solution models in the low to moderate regime of monomer con-
centrations in a reliable way. To show this, we present novel low-cost approximation
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strategies beyond the mean field level of approximation using effective renormalization
concepts, originating from the domain of quantum field theory, and demonstrate their
usefulness in the calculation of structure and physical properties of several polymer
models, described at various levels of description.

Keywords Polymer field theories · Multiscale modeling · Beyond mean field
approximations · Fluctuations

1 Introduction

Materials composed of polymers are widely found in nature and technology. Their
great success is due to their remarkable variability, which permits to tailor their struc-
ture and dynamics to provide the desired physical property or functionality. Nature
has made wide use of evolutionary principles through million of years, to optimize
their composition and functioning in biological systems. In the last century human-
kind has rapidly increased their diversity and scope of application by developing new
synthesis strategies and high-performance catalysts, which can produce a large variety
of new exciting macromolecular architectures with unprecedented physical properties
[1–4]. It has, however, quickly been acknowledged that testing all possible material
configurations for all their properties, only through experimental means, can be a
very time- and cost-intensive task. To alleviate the difficulty, simple empirical con-
cepts and black-box simulation tools have been devised, to control and optimize their
properties in a more directed fashion. In the last few years it has, however, increas-
ingly been recognized that physical properties of macromolecular systems, such as
e.g. thermodynamic or mechanical properties, are dramatically affected by morphol-
ogies and phenomena arising on different length and time scales [5–12]. To analyze
the problem in more detail, let us first think about a single DNA molecule, whose
monomeric unit is about the fraction of a nanometer, while the size of the whole chain
is typically about several thousand times larger. Embedded in a cellular medium, the
characteristic time scales of the macromolecule will range from femto-seconds, as in
case of intra-molecular vibrations, to several seconds, which corresponds to the typi-
cal relaxation time of writhing motions of DNA in living cells [13]. Additional scales
are introduced through counterions, solvent molecules as well as potential salt ions
[14,15], significantly increasing the variability of DNA materials and, thus, rendering
their behavior even more complex. However, multiscale problems from the biological
world can even be more sophisticated, if one considers the signal transduction of pho-
toactive proteins, where the formation or breaking of a covalent bond in a localized
reaction center triggers a signal on a much larger scale in the protein environment
[16,17]. Another example of similar type is the phenomenon of crack propagation
in crystalline or amorphous polymer materials, which is of great importance in poly-
mer technology. In order to enable a proper determination of the fracture energy, one
requires a hierarchical and interrelated description, linking the breaking of the atomic
bonds in the fracture region and the response of the surrounding medium on a micron
scale [18,19]. The latter case shows quite convincingly that multiscale problems can
also play a major role in high-value products, used in our daily life. A prominent
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example is the mechanical relaxation of block-copolymer-based thermoplastic
elastomers (TPEs), forming networks of physical crosslinks. From experimental inves-
tigations, it has recently been inferred that, in addition to their slow and ineffective
stress relaxation through intrachain mechanisms, an infrequent but efficient process
of chain pullout of the bridging chains is triggered at long times, in response to a
nonlinear deformation [20]. As we will see in the following, this process provokes the
generation of a new domain-structure at the nanoscale, determining magnitude and
long-time behavior of their overall mechanical properties. From the previous exam-
ples, we clearly deduce that multiscale problems are universal and their complexity
makes any attempt of understanding and controlling the chemistry and physics of
polymer materials to a highly nontrivial task. Therefore, new theoretical approaches,
which can explain and reliably predict their properties, are of inestimable interest and
can open new perspectives for major technological innovations.

1.1 Modeling of polymer materials

A long-standing goal of physical, chemical and engineering sciences has been to
develop efficient theoretical tools for understanding and predicting the physical prop-
erties of polymer materials from the knowledge of a few input parameters [21]. How-
ever, the development of such tools is particularly demanding, since generally one
needs to cope with a multitude of components and interactions, which influence their
structure and dynamics at the various scales. To meet this theoretical challenge, we
have considered the following levels of description throughout this review:

1. quantum level (�l < 10 Å,�τ < 10−15 s);
2. atomistic level (�l = 10–100 Å,�τ = 10−15 to 10−9 s);
3. mesoscopic level (�l = 100–10000 Å,�τ = 10−9 to 10−3 s);
4. continuum level (�l > 10000 Å,�τ > 10−3 s).

The usefulness of the various levels for polymer materials is generally strongly depen-
dent on the problem under consideration and must be judiciously selected prior to a
simulation by making use of suitable analysis tools. A further indication of their use-
fulness can be gained by considering the characteristic relaxation time�τ of a polymer
material at the respective length scale �l. A selection of typical values is given in the
previous list, which can be used as a rough guideline. In the following we present the
state of the art in modeling of polymer materials on each level separately, as well as
simultaneously through interlinked levels.

1.1.1 Quantum level

At the quantum level, a polymer system is described in terms of nuclear and electronic
degrees of freedom, whose behavior is determined by the many-particle wavefunction,
obtained by solving the Schrödinger equation. Various ab initio quantum-chemical
techniques [22] exist for solving this equation in the wavefunction representation,
which are known as wavefunction approaches. These techniques in principle do not
require empirical knowledge about the various effective interactions involved in the

123



366 J Math Chem (2009) 46:363–426

system, but generally necessitate a high amount of computational power. Among the
most prominent examples are the configuration interaction CI and coupled cluster CC
methods, which rely on judicious perturbation expansions of the many-particle wave-
function [22]. Another particular useful approach is the density functional theory
(DFT), which describes the states of the system via an energy functional depending
on the density of the particles [23]. The basis of DFT is the proof of Hohenberg
and Kohn [24], which states that the ground-state electronic energy is completely
determined by the electron density ρ. In other words, there exists an one-to-one corre-
spondence between the electron density of a system and the energy. The significance
of this theorem is well illustrated by comparing DFT to the wavefunction approach. A
wavefunction for a N -electron system contains 3N -coordinates, three for each elec-
tron (four if the spin is included). In contrast, the electron density is the square of the
wavefunction, integrated over (N − 1)-electron coordinates, and, thus, only depends
on three coordinates, independently of the number of electrons [22]. While the com-
plexity of a wavefunction increases with the number of electrons, the electron density
has the same number of variables, independently of the system size. The “only” prob-
lem is that, although it has been proven that each different density yields a different
ground-state energy, the functional form connecting these two quantities is not known
[22]. Therefore, the major focus of the research activities in the field of DFT is to
design appropriate and transferable functionals, connecting the electron density with
the energy. Unfortunately, to date even the simplest DFT scheme is computationally
intractable on the quantum level for systems with more than approximately 1000 atoms,
if one neglects the quantum nature of the nuclei. Since most of the physical properties
of polymer materials are typically determined from systems containing more than the
previously mentioned number of atoms, this restricts the usefulness of the quantum
level of description for modeling polymers to carefully selected reaction centers.

1.1.2 Atomistic level

The next higher level of description, which in the following we will refer to as
the atomistic level, can be reached by discarding the electronic degrees of freedom
and replacing their interactions by effective coarse–grained interactions between the
nuclei, expressed via classical potentials. In this picture the motions of the atoms are
treated classically, and their trajectory is propagated deterministically or stochasti-
cally through state space, spanned by the respective particle degrees of freedom [25].
To explain this picture in more detail, let us in the following consider a system of
N -particles, which is described by the following Hamiltonian [25]:

H(r,p) =
N∑

i=1

p2
i

2mi
+ Φ(r), (1)

where the first and second term represent the kinetic and potential energy, respec-
tively. The variables r = (r1, . . . , rN ) and p = (p1, . . . ,pN ) denote the sets of atomic
positions and momenta, while mi is the mass of the i th atom. The potential energy
Φ(r) is generally approximated by invoking the pairwise approximation [25], where
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many-body effects are partially included in the effective pair potential Φ
eff
ij (rij). In the

absence of any external field, the potential energy can then be written as

Φ(r) ≈
N∑

i

N∑

j>i

Φ
eff
ij (rij), (2)

where rij = ∣∣ri − r j
∣∣ is the distance between particle i and j . The sum over atomic

pairs can comprise effective interactions between bonded and non-bonded atoms. A
commonly used two-parameter potential model for describing non-bonded interac-
tions between a pair of neutral atoms is the Lennard–Jones (LJ) 6–12 potential [25]

Φ
eff
ij (r) = 4ε

[(σ
r

)12 −
(σ

r

)6
]
, (3)

where ε represents the potential well depth and σ is the pair separation at zero energy.
The latter parameters are generally obtained from experiments or by performing ab
initio quantum chemical calculations on small subsets of atoms. Once the force-fields
are known, a broad range of particle-based computer simulation techniques are avail-
able to simulate the statistical behavior of the particle system under various external
conditions [25–28]. For instance, a molecular dynamics (MD) simulation is conducted
by numerically integrating in time t Hamilton’s equations of motion,

dpi

dt
= −∂H(r,p)

∂ri
, (4)

dri

dt
= ∂H(r,p)

∂pi
,

for each of the N particles of the system [25]. In 3 dimensions, this represents a set of
6N -first-order differential equations, which are integrated numerically by subjecting
them to the initial set of particle positions and momenta as well as periodic boundary
conditions, to reduce the influence of the finite size effects. The resulting trajectory
must be representative and evolve a sufficiently long time in state space, to fulfill the
quasi-ergodic theorem, expressed by [29]

Oobs = 〈O〉ens = lim
trun−→∞ 〈O〉trun

, (5)

where Oobs is the macroscopic physical quantity and 〈O〉ens the corresponding ensem-
ble average, while 〈O〉trun

is the time-average of the observable O over simulation time
trun .

Atomistic level simulations have been employed quite extensively in the past
50 years [25] and provided precious physical insights into the equilibrium properties
of a multitude of physical systems, like e.g. membranes [30], proteins [30], polymers
[31,32] and micellar solutions [33], etc. However, despite their great merit, they are
plagued by inherent limitations within the conventional particle description, which are
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worth reconsidering at this stage. First of all, there is an intrinsic time scale in Eq. 4
that depends on the form of the potential energy function. For a liquid of identical
argon atoms interacting pairwise via the LJ potential, this time scale is given through
τ = (

mσ 2/ε
)1/2 ∼ 10−12 s [34]. Considering that accurate numerical integration of

Eq. 4 in the condensed liquid state typically requires a timestep �t that is approxi-
mately two orders of magnitude smaller than τ , we get for liquid argon�t ∼ 10−14 s.
The simulation of such a fluid with current state-of-the-art MD techniques [26] would
involve tracking the trajectories of approximately N = 106 atoms for up to 106 time-
steps, which would represent 10 ns of real time [34]. Larger scale MD simulations
can be carried out, but they generally require access to supercomputer resources that
are not widely accessible [35]. With this information in mind, we can assess the
computational resources that would be necessary to carry out a fully atomistic MD
simulation of a poly-(styrene–butadiene–styrene) (SBS) block copolymer system of
the type shown in Fig. 1. To simplify our simulation task, we restrict ourselves to
a two-dimensional system and generously assign one atom per 1 Å2 [8]. By taking
into account the length scales depicted in the figures, we can easily estimate that one
would need about 7 × 108 and 2 × 108 atoms, to simulate the systems on the left-
and right-hand side respectively. If we now further consider that for macromolecular
materials most of the interactions of atom pairs are non-bonded interactions, it can
easily be demonstrated that in the limit of large molecules the computational time for
calculating the force field energy grows approximately as the square of the number of
atoms [22]. This quickly becomes prohibitive, if one considers the number of atoms
generally involved in macromolecular simulations. Fortunately, the majority of these
non-bonded contributions to the energy are very small, because the distances between
most atom pairs are large. Therefore, a considerable saving in computational time can

Fig. 1 Images obtained from scanning force microscopy of systems composed of phase-separated poly-
(styrene–butadiene–styrene) SBS triblock copolymers [241]
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be achieved by simply truncating the long-range interactions at some distance, i.e. for
a system of van-der-Waals (vdW) interactions typically at 10 Å. However, it is worth
taking into account that, although the contribution from most atom pairs is very small,
their number becomes large very quickly and, as a consequence, they may be determi-
nant for morphologies and phenomena on larger length scales. As a simple estimate,
one can say that increasing the cutoff in a system, dominated by vdW interactions,
from 10 to 20 Å increases the computational time by a factor of 5–10 [22]. In situations
where such long-range interactions are important, classical DFT methodologies [23]
or atomistic field-theoretic approaches of the type presented in the following [36,37]
may prove more effective, because they avoid the summation over atomic pairs. Beside
the length scale, another major issue to concern about in macromolecular simulations
is the time scale. Adopting an argon-like timestep of 10−14 s for a system of macro-
molecular size, implies that a MD simulation with a duration of up to 10 ns would be
manageable. This would certainly be enough for equilibrating a homogeneous liquid
system of argon atoms. However, local equilibration of a heterogeneous block copoly-
mer system of the size shown in Fig. 1 might take place in a time as short as 10−3 s,
while defect migration and larger scale evolution of the composition patterns occur in
seconds, hours or days [34]. The equilibration can even be longer in the vicinity of a
glass transition and with longer chain lengths, since relaxation times in entangled poly-
mer melts grow faster than the third power of the molecular weight [38]. In conclusion,
we would need, at the very least, 105 times more computer power than is available for
a current state-of-the-art MD simulation, to equilibrate the two-dimensional system
considered in Fig. 1. Equilibration of a three-dimensional atomistic model of the same
polymer system is to date and will remain intractable in the foreseeable future.

1.1.3 Mesoscopic level

The standard strategy for addressing the inherent difficulties, associated with fully
atomistic particle-based simulations of polymer systems, is to coarse–grain the poly-
mer model so that groups of atoms are lumped into larger entities, referred to as united
atoms or superatoms [11,39]. The resulting effective particles may correspond e.g. to
monomer residues within a polymer chain surrounded by solvent molecules, which
interact by new effective interaction potentials that must be re-parameterized. Unfor-
tunately, within the particle description it is very difficult to develop a systematic and
consistent coarse–graining procedure for the large variety of polymer materials of
interest. At the lowest level, one can group adjacent atoms to form an united atom
(UA). For example, in case of a polyethylene polymer one can lump each CH2-unit
into an UA along the chain, and, then, use empirical knowledge or quantum chemi-
cal calculations, to fit the parameters of the respective potential models. Such an UA
approach has been used quite successfully to simulate oligomeric fluids and single-
phase polymeric fluids of low molecular weight, but does not go very far in alleviating
the serious spatial and temporal limitations of fully atomistic simulations of polymer
materials within the particle description. Higher levels of coarse–graining are even
more problematic. For instance, if we wish to lump ten adjacent monomer repeat units
within a polymer backbone into a single entity, the task of parameterizing the effective
interactions between that entity and other such entities is very heavy. This results from
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the fact that each entity consists of a subchain that can adopt many different conforma-
tions. Some success has been achieved by carrying out fully atomistic simulations of
small portions of the polymer material and, then, using the simulation data to compute
the spatial correlation functions among the center-of-mass positions of the subchains.
These correlation functions can in principle be used to build models for effective pair,
three-body, and higher inter-particle potential functions that could subsequently be
employed for particle-based simulations of larger systems. In practice, however, this
procedure is fraught with a number of difficulties and is far from being routine [5].

A more convenient coarse–graining procedure for a polymeric material is to essen-
tially ignore its atomic details below a threshold of about 1 nm, while preserving
larger-scale features of the individual polymers, such as their connectivity, space-fill-
ing characteristics and architecture [5,40]. The resulting techniques generally define
the mesoscopic level of description (meso from the greek µέση, which means “mid-
dle”), which designates the intermediate level between the atomistic and continuum
scale. A typical example is the coarse–graining of a polypropylene–polyethylene
(PP–PE) diblock copolymer into a “bead-spring” model. In such a model the posi-
tions and momenta of the atoms are centered on beads, which are interconnected by
springs representing effective pair interactions between the bonded atoms along a
chain. For describing the bonded interactions harmonic or anharmonic spring mod-
els are generally employed, while non-bonded interactions are treated within the pair
approximation using simple empirical functions, like e.g. the LJ potential. Parameters
for these potentials are typically determined by fitting simulation results to available
experimental data. Such models can in general very effectively be calculated within
a field-theoretic approach by making use of the mean field (MF) approximation [34].
However, a problem of this technique is that in some important cases, like e.g. neutral
and charged polymer solutions in low concentrations regimes, correlations between
the interacting beads are relevant and fluctuations beyond the MF level need to be
taken into account, which can render the calculation very demanding. Nevertheless, it
is worth noting that computer simulations of mesoscopic polymer field theories have
been quite useful in studying structures and physical properties of a broad variety
of important polymer systems, like e.g. polymer alloys, strongly segregated block
copolymers of high molecular weight, molten polymer brushes and highly concen-
trated polymer solutions [34,39,41–47].

1.1.4 Continuum level

On the continuum level of description, one assumes the existence of a fully or par-
tially continuous material structure in a polymer material, and in case of a composite
one normally does not explicitly include the chemical interactions between the con-
stituent phases [48]. Methods of this kind can be classified as either of analytical
or numerical type. Numerical continuum-based modeling methods generally solve
the continuum equations using either finite-element or finite-difference techniques.
A prominent example is the finite-element (FE) method of Gusev [49,50], which
uses geometries, volume fractions and other properties of the constituent phases as
input for the numerical computation of the bulk properties of the composite materi-
als. It involves the discretization of the material’s representative volume element into
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elements, for which the elastic solutions lead to the desired stress and strain fields [51].
In the limit of infinitely fine discretization of the FE mesh an exact numerical solution
of the problem can be gained. However, it is worth mentioning that with improved
discretization, the continuum-based models become more complex and correspond-
ing FE simulations more time-consuming, which limits the utility of this approach
for sophisticated polymer materials [48]. Another type of numerical continuum-based
method is the boundary-element (BE) method [52], which is a continuum mechanics
approach involving the solution of boundary integral equations for the evaluation of the
stress and strain fields [53]. In contrast to the FE method, which necessitates elements
throughout the simulation cell, this method only requires elements along the bound-
aries, which renders it computationally less exhaustive than the FE approach [48]. In
addition, a multitude of analytical continuum-based modeling tools [48,54] have been
devised in the 1960s and 1970s for solving the multiphase problems of interest, relying
on a broad variety of more or less controlled model approximations. These techniques
have been employed to estimate absolute values or rigorous upper/lower bounds for
the mechanical properties of polymer nanocomposites [48,55–63]. A representative
selection of these techniques will be discussed in more detail in Sect. 3.2.

1.1.5 Multiscale simulation

As outlined on the example of the physical problems at the beginning of this review,
multiscale modeling (MSM) of polymer materials poses great challenges due to the
huge range of length and time scales, influencing their structures and physical prop-
erties [9,10]. These challenges can only be met through the development of suitable
hierarchical analysis and simulation strategies encompassing many interconnected
levels, where each level addresses a phenomenon over a specific window of length
and time. Among the various approaches, we can distinguish between two types of
MSM methods, the implicit-level-coupling MSM procedures, which directly combine
and simulate several levels of description within one calculation, and the hierarchi-
cal MSM procedures [6,7], in which informations from calculations at smaller scales
are used as input information for calculations with coarse–grained models at larger
scales. For instance, Doi and coworkers [64,65] developed a suite of hierarchical
MSM tools that model polymer systems from the molecular to the continuum scale.
Although each tool performs independent calculations by using only one method at a
time, the output from one method can be used directly as input for another, allowing
an off-line bridging between the different scales. They applied this method to study
the molecular mechanism, affecting the stress–strain behavior of an ABA triblock
copolymer system [31]. In their approach the problem of generating equilibrium con-
figurations with atomistic MD is overcome by generating equilibrium configurations
using information from a preliminary mesoscopic field-theoretic calculation. Kremer
and coworkers developed a similar MSM strategy, to investigate the properties of
polymers in contact with metal surfaces [66–68]. With this strategy, they calculated
e.g. the bulk properties of a polycarbonate melt near a nickel surface by first param-
eterizing the surface interactions through extensive quantum-mechanical DFT calcu-
lations and, then, simulating a suitably coarse–grained bead-spring model with MD
methods, using the previously determined model parameters as input parameters [66].
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A multitude of additional MSM approaches have been developed in recent years
aiming at bridging the atomistic–mesoscopic [39,69], atomistic–continuum [70–77],
quantum–atomistic–continuum [78], as well as quantum–atomistic level of descrip-
tion [79,80]. However, a common feature and limitation of all these methods is the
fact that portions of the system treated at different levels of resolution have to be fixed
in advance and, thus, do not allow for free exchange during the simulation. This limi-
tation is particularly problematic, if one wishes to study polymer systems, affected by
severe composition fluctuations [18], like e.g. phase-separated block copolymers near
the order–disorder transition or in vicinity to their interphases, polymer solutions at
low to moderate monomer concentrations, etc. Note that such cases will be discussed
in more detail in the subsequent parts of this review. Additional difficulties can arise
by coupling methodologies of different levels of description, originating from differ-
ent theoretical formalisms. In particular, translating the information between different
levels, often opens severe conceptual problems, if the levels wish to be combined and
simulated simultaneously. For example, atomistic particle-based methodologies are
frequently connected with functional-based methodologies such as quantum DFTs,
whose different theoretical framework renders a consistent treatment of the coupling
region difficult. To overcome such problems, an unified theoretical framework would
be highly desirable. We will demonstrate in the further development that the field-
theoretic formalism is a particularly convenient language for applications involving
polymers or complex fluids, since it permits to develop consistent MSM approaches
from the quantum to the continuum scale within the same theoretical framework.
A further substantial advantage of field-theoretic approaches with regard to particle-
based methods is their high computational efficiency in dealing with macromolecular
systems on the chain-level of description by making use of effective approximation
strategies and their ability to treat fluctuations in an efficient way. A more detailed
discussion of these issues will be given in the further development.

1.2 Main objectives and overall strategy

The main objective of this review is to provide a survey about recent progresses in
the emerging field of MSM methods based on the field-theoretic formalism, and show
their suitability in solving sophisticated multiple length and time scale problems aris-
ing in the determination of the physical properties of neutral and charged polymer
materials. In the following we present MSM methods, which address the multiscale
challenges by adopting the following two-step procedure:

1. development and application of analytical MSM and hierarchical-analysis tools,
to identify the relevant length and time scales involved in the polymer system
under consideration;

2. development and application of numerical MSM strategies, to study the polymer
system and determine its corresponding physical properties.

In the further development we will demonstrate the effectiveness of this procedure on
the example of block-copolymer-based TPEs. To this end, we make use in a preliminary
step of a numerical FE tool on the continuum level of description, to study the influ-
ence of molecular details on their linear mechanical properties. Then, in a subsequent
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step we introduce an analytical and numerical MSM approach, to explain and predict
their peculiar long-time stress relaxation behavior, in response to a tensile defor-
mation pertaining to the nonlinear regime of mechanical properties. The analytical
MSM approach employs a semi-phenomenological ansatz, which permits to take into
account within the same model the intra-chain relaxation of the dangling chains and
loops, attached to the crosslinks of the polymer network, as well as the relaxation
of the crosslink domains of nanoscale size, resulting from chain readjustments. This
permits us to investigate the importance of the various relaxation mechanisms and to
identify the relevant length and time scales, involved in the stress relaxation process at
long times. We then use this information as input for developing our numerical MSM
approach, which enables us to perform a more detailed investigation of the local and
macroscopic physical properties of the TPEs. The numerical MSM approach intro-
duces the continuum scale by coupling a mesoscopic field-theoretic approach with a
kinetic Monte Carlo algorithm and permits in this way to simulate the fluctuations,
originating from chain-dynamical processes at the interphases. To investigate the use-
fulness of both MSM approaches, we compare their results with mechanical experi-
ments performed on styrenic triblock TPEs and show that they correctly describe their
peculiar stress relaxation spectrum and viscoelastic behavior, observed below the glass
transition temperature of the polystyrene crosslinks. A further objective of this review
is to provide an overview about the recent progress made in the development of field-
theoretic methodologies beyond the MF level of approximation, allowing to extend
their scope of application to polymer problems, in which fluctuations are important.
To this end, we present efficient low-cost approximation strategies, where fluctuation
contributions are taken into account, by making use of effective quantum-field-theo-
retic concepts, and demonstrate their effectiveness in the calculation of structural and
thermodynamic properties of polymer solutions in various concentration regimes and
various levels of coarse–graining. Finally, we discuss the extension of these method-
ologies to real-time and quantum-statistical many-body problems, which permits us
to show that the field-theoretic approach is a suitable formalism to treat all levels of
description of polymer materials within an unified theoretical framework.

Our review is organized as follows. In Chapter 2 we present the basic derivation steps
of the statistical field theories on the example of a system of flexible polymer chains.
Afterwards, in Chapter 3 we discuss investigations of the linear mechanical behavior
of styrenic triblock TPEs using the FE route and, then, present in the subsequent part
our analytical and numerical MSM tools, which are employed to study the nonlinear
regime. In Chapter 4 we address the fluctuation problem by introducing novel low-
cost approximation strategies beyond the MF level of approximation, to treat polymer
solutions in various concentration regimes on the mesoscopic level of description.
Subsequently, in Chapter 5 we discuss the extension of these strategies to real-time
and quantum-statistical theories. Finally, we end the review by providing conclusions
and a brief outlook about future goals.

At this stage, we feel that it is important to specify that this review does not intend
to give a complete overview about field-theoretic methodologies, but rather to provide
a survey about recent progresses in this research area and demonstrate its potentials
for MSM.
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2 Statistical field theories

2.1 Basic ideas

A system with many-body interactions is generally very difficult to solve exactly within
the particle-based formalism, excepting for very simple cases, like e.g. the 1D-Ising
model. The great difficulty, when computing its partition-function integral and related
ensemble averages, is the treatment of the many-body interaction term in the action,
when integrating over all configurations. To reduce the computational burden, two
major functional-based formalism have emerged in the last few years, which permit
to treat multiple levels of description within an unified theoretical framework, i.e. the
finite-temperature density-functional theory (FT-DFT) [81] and the statistical field-
theory (SFT) [34]. The FT-DFT is applicable to both quantum and classical systems
and essentially provides a formalism, how to project the multi-dimensional many-par-
ticle problem of a statistical ensemble onto a collective-variable formalism with the
density field as the order parameter [23]. However, even if the Hohenberg and Kohn
theorem [24] proves that a FT-DFT is an exact formalism, it does not provide any
prescription, how to construct the corresponding free energy functional rendering a
systematic improvement of FT-DFTs difficult in practice [22]. In contrast, the underly-
ing concept of a SFT is to solve the combinatorial problem by exactly reformulating the
partition-function integral in a suitable functional-integral representation through line-
arizing the action with respect to the density field ρ(r). This is achieved by performing
a delta-functional [82] or Hubbard–Stratonovich transformation [36], which permits
to replace the original particle degrees of freedom with field degrees of freedom. The
resulting field functionw(r) designates a set of scalar numbers defined at any position
r in direct space, where each tuple represents a configuration pertaining to the field
configuration space. To explain the field-theoretic formalism in more detail, let us in
the following consider the basic derivation steps of a SFT on the example of a system
of flexible polymer chains, described on the mesoscopic level of description [82].

2.2 Field theory for flexible polymer chains

The standard continuum model of flexible polymers, introduced by Edwards [83],
treats a solution composed of n linear monodisperse homopolymers as a system of
coarse–grained polymers, in which the statistical mechanics of the chains is described
by the continuous Gaussian-thread model [34] and the solvent is taken into account
implicitly. The latter model can be considered as the continuum limit of the discrete
Gaussian-chain model, in which the polymers are described as beads coupled through
harmonic springs. The canonical partition function of such a system, kept at an inverse
temperature β = 1/(kB T ) and confined in a volume V , can be expressed as

Z(n, V, β) = 1

n!(λ3
T )

nN

n∏

j=1

∫
Dr j exp

(−βΦ0 [r] − βΦ̄ [r]
)
, (6)

where Φ̄ [r] is the potential of mean force given by,
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Φ̄ [r] ≈ N 2

2

n∑

j=1

n∑

k=1

1∫

0

ds

1∫

0

ds′Φ̄
(∣∣r j (s)− rk(s

′)
∣∣)− 1

2
nNΦ̄(0), (7)

representing the solvent-mediated non-bonded interactions among the segments, while
Φ0[r] represents the harmonic stretching energy of the bead-spring chains. The latter
energy contribution can be formulated as

Φ0[r] = 3kB T

2Nb2

n∑

l=1

1∫

0

ds

∣∣∣∣
drl(s)

ds

∣∣∣∣
2

, (8)

where b is the statistical segment length and N the polymerization index. Moreover,
we point out that the latter term in Eq. 7 denotes the self-interaction contribution of
the non-bonded inter-monomer interactions. To derive the basic field-theoretic repre-
sentation of the canonical partition function, we next introduce the segment density
operator of the polymer system

ρ̂(r) = N
n∑

j=1

1∫

0

dsδ
(
r − r j (s)

)
. (9)

Using this definition, we can easily rewrite Eq. 7 as

Φ̄ [r] = 1

2

∫
dr
∫

dr′ρ̂(r)Φ̄(
∣∣r − r′∣∣)ρ̂(r′)− 1

2
nNΦ̄(0). (10)

Next, we transform the model into a SFT by making use of the definition of the
delta-functional

∫
Dρ δ [ρ − ρ̂

]
F [ρ] = F

[
ρ̂
]
, (11)

where F
[
ρ̂
]

is a functional and δ
[
ρ − ρ̂

]
is the delta functional given by

δ
[
ρ − ρ̂

] =
∫

Dw ei
∫

drw(r)[ρ(r)−ρ̂(r)], (12)

with w(r)= ∑
G w(G) exp [iGr] representing the field function. We note that,

expanding the field function in a Fourier series, implies that periodic boundary con-
ditions are applied in all directions and that the G-vectors designate the reciprocal
lattice vectors of the supercell. Making use of Eqs. 10–12, we can recast the canonical
partition function in Eq. 6 into the following field-theoretic representation:

Z(n, V, β) = Z0

∫
Dw exp

[
− 1

2βV 2

∫
drdr′w(r)Φ̄−1

(r − r′)w(r′)
]

Qn[iw],
(13)
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where

Z0 = 1

n!

(
exp

(
β/2NΦ̄(0)

)
Z ′

λ3N
T

)n

(14)

can be interpreted as the partition function for an ideal gas of non-interacting polymers
and

Z ′ =
∫

DR exp [−βU0(R)] (15)

is the path integral of a free polymer in a zero field with elastic energy

U0[R] = kB T

4R2
g0

1∫

0

ds

∣∣∣∣
dR(s)

ds

∣∣∣∣
2

. (16)

In the latter equation the unperturbed radius of gyration of a chain Rg0 = √Nb2/(2d),
where the space dimension d = 3. Moreover, in Eq. 13 the partition function of a single
polymer, subjected to the field w(R), is given by

Q[iw] =
∫ DR exp

[
−βU0[R] − i N

∫ 1
0 ds w(R(s))

]

∫ DR exp [−βU0[R]] , (17)

with U0 defined by Eq. 16. To derive the grand canonical partition function, we use
its standard thermodynamic relation to the canonical partition function [25],

�(µ, V, β) =
∞∑

n=0

eβµn Z(n, V, β), (18)

whereµ is the chemical potential and Z(n, V, β) is given by Eq. 13. After performing
the sum, Eq. 18 provides the field-theoretic representation of the grand canonical
partition function,

�(ξ, V, β) = γΦ̄

∫
Dw exp [−S[w]] , (19)

where

S[w] = 1

2βV 2

∫
drdr′w(r)Φ̄−1

(r − r′)w(r′)− ξQ[iw] (20)

is the grand canonical action with Q[iw] defined by Eq. 17 and the constant

γΦ̄ = 1√
2

∏

G

(
1

πβΦ̄(G)

)1/2

. (21)
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Moreover, the parameter related to the chemical potential

ξ = exp
(
βµ+ β/2NΦ̄(0)

)
Z ′

λ3N
T

, (22)

where Z ′ is provided by Eq. 15. Similar SFTs can be derived for systems described
on the quantum [84–87], atomistic [36,37] and continuum level of description [88]
by performing analogous transformations. This characteristic confers SFT methods
very advantageous properties over particle-based approaches for solving multiscale
problems, since they permit to treat all scales within an unified theoretical framework.
Another advantage of SFT approaches lies in the development of effective low-cost
approximation strategies, which provide them collective variable character similar
to FT-DFTs and the possibility of handling a fewer number of degrees of freedom.
Moreover, the accuracy of SFT approximations, in contrast to FT-DFTs, can generally
further be improved in a systematic way by computing higher-order corrections. As a
very convincing example, we should here focus on the single field degree of freedom,
obtained by invoking the MF approximation. With the sole MF configuration, one can
reliably describe the state of a broad class of polymer melts and polymer solutions at
high monomer concentrations, involving a large number of particle degrees of freedom
and interactions. If we would instead compute such systems with conventional parti-
cle-based simulation approaches, this would certainly involve a much higher number of
degrees of freedom and, as a consequence, be computationally much more demanding.
A further significant advantage with respect to particle-based approaches arises in the
computation of macromolecular systems with soft, long-ranged interactions [89]. As
already outlined in Sect. 1.1.2 of the introduction, particle-based approaches require
large cutoffs or computationally expensive techniques like the Ewald summation [25],
to treat systems with long-range interactions reliably. Such techniques are not needed
in case of SFT methods. Moreover, the often highly polymeric nature of macromo-
lecular systems introduces additional difficulties for particle-based approaches, since
it leads to very long equilibration times [34]. SFT methods overcome the problem by
reformulating the particle systems in functional integral formulation and discarding
configurations of low statistical weight through making use of effective calculation
strategies. Finally, additional benefits for the latter methods are expected in the com-
putation of open polymer systems at lower temperatures in the range of physical
interest. In such situations particle-based grand canonical simulation algorithms are
known to become increasingly inefficient with growing interaction strength between
the interacting monomers, due to a highly ineffective particle insertion step [37,90].
Since grand canonical SFT approaches do not perform particle insertion moves, this
represents another major advantage on the route towards understanding and predicting
the structure–property relationship of macromolecular systems.

2.3 Mean-field approximation and fluctuation problem

A simple approximation strategy, commonly used to calculate SFTs on all levels of
description, relies on the mean-field MF approximation,

123



378 J Math Chem (2009) 46:363–426

δS[w]
δw(r)

∣∣∣∣
w=wMF

= 0. (23)

It reduces the computational task by replacing the many-body interaction term in the
action by a term where all bodies of the system interact with an average effective
field. This allows us to reduce any multi-body problem into an effective one-body
problem and implies that the partition-function integral of the model under consider-
ation is dominated by a single field configuration. A major benefit of solving problems
within the MF approximation is that it provides some useful insights into the struc-
ture and physical properties of the system at relatively low computational cost and
in many instances also represents a convenient launch-point, to study higher-order
fluctuation corrections. Successful applications can be found throughout all fields of
physics, chemistry and biology [91–95]. The MF approximation has also widely been
employed to approximate functional integrals arising in SFTs of polymers and com-
plex fluids [34,41–43]. Originally introduced in this area by Edwards [83], Helfand
and Tagami [96] and commonly referred to as self-consistent field theory (SCFT), it
has been proven useful for estimating structure and thermodynamic properties of a
large variety of polymer systems, including polymer alloys, strongly segregated block
copolymers of high molecular weight, molten polymer brushes and highly concen-
trated polymer solutions, among others [34]. There are, however, a multitude of impor-
tant cases in polymer science, in which the MF approximation provides inaccurate or
even qualitatively incorrect results [34]. These comprise neutral polymer or polyelec-
trolyte solutions in dilute and semidilute concentration regimes, block copolymers
near their order–disorder transition, polymer blends near their phase transitions, etc.
In such situations the partition-function integral, defining the field-theoretic model, is
not entirely dominated by the MF configuration, and field configurations far from it
can make important contributions, which require the use of more sophisticated cal-
culation techniques beyond the MF level of approximation. In the following we will
show that, in case of neutral and charged polymer solutions, the MF approximation
technique gives reliable information about the system in the regime of high monomer
concentrations, where the interactions among the monomers are highly screened and
fluctuations away from the MF configuration are unimportant. However, it is worth
considering in this context that in most biological and technological applications of
polymer solutions the ranges of physical interest lie in the intermediate to low con-
centration regimes, where fluctuations beyond the MF level of approximation become
relevant and dominate the overall physical behavior. To cope with these difficulties,
we will present in Sect. 4.2.1 novel low-cost approximation techniques, which permit
to take into account such fluctuation contributions effectively and in this way extend
the scope of application of SFTs to lower concentration regimes.

3 Block copolymers

Block copolymers are polymers made of two or more chemically distinct sequences
(blocks) of monomer units that are covalently linked together. A particular impor-
tant type of block copolymers are those contained in thermoplastics [97], which are
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constituted of chains with alternating hard and soft segments. Prominent examples
among them are the technologically important styrenic thermoplastic elastomers TPEs.
They are typically composed of triblock copolymer chains, where a center-block of
either poly-isoprene (PI) or poly-butadiene (PB) is chemically connected with end-
blocks of poly-styrene (PS). For high molecular weights and below the order–disorder
transition temperature, such block copolymers phase-separate by forming periodi-
cally arranged networks of PS phases, embedded in a matrix phase of either PI or
PB. Depending on the volume fraction of the components, the PS phases may adopt
a spherical, cylindrical, gyroid or lamellar morphology, which are of nanoscale size
[98]. Below the glass transition temperature of PS, the PS phases form hard glassy
crosslinks, conferring these solid materials their exceptional strength and elasticity.
However, as we will see in the following already at room temperature the physi-
cal crosslinks of PS can become transient in nature, which may induce viscoelastic
behavior. Block copolymer-based TPEs are particularly relevant in pressure sensitive
applications, where high elasticity and durability is important, like e.g. tire treads or
packaging [99]. Moreover, they also show promising field of applications in nano-
technology as nanostructured self-assembling matrix-templates [100–103], providing
new perspectives for large-scale industrial manufacturing of flexible color displays
[104] or solar cells [105,106] at affordable production costs. Last but not least, block
copolymers in solution also find wide use in medicinal applications, like e.g. amphi-
philic block copolymers for drug delivery [107–109] or block copolymer gels in tissue
engineering [110]. Finally, it is also worth recalling that the recent development of
new synthesis strategies [1–4] has substantially increased the variability and scope of
application of block copolymer materials. However, testing all possible variants for
all their material properties, only through experimental means, is undoubtedly highly
ineffective. In this regard, new theoretical approaches can provide valuable guidance
and can become a major prerequisite on the route of target-oriented development of
functionalized polymer materials. Therefore, our goal in this chapter will be to pres-
ent new theoretical approaches, which are able to predict the structural–dynamical
properties of the block-copolymer-based TPEs introduced previously.

3.1 Theory and simulation of block copolymers—state of the art

Despite these obvious needs, progresses in the theoretical prediction of material prop-
erties of block-copolymer-based TPEs have only been slow in the past [111,112].
Some of the major difficulties are summarized in the following: (1) their relaxation
and, as a consequence, their equilibration is very slow, which renders the direct appli-
cation of particle-based simulation methods, like e.g. MD, difficult [31]; (2) multiple
length and time scales generally strongly influence their physical properties and must
be taken into account, when overall thermodynamic and mechanical properties wish
to be determined [12]; (3) the effect of the interphases on the physical properties is still
not well understood and characterized [113]. As a result, their role is often neglected
in the development of new theoretical approaches or it is included in a very empiri-
cal way [114]; (4) nonlinear external perturbations can damage the structure, which
may lead to an uncharacterized new morphology that changes with time as further
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deformation is exerted and/or healing does take place [111]; (5) the individual phases
in such multiphase materials are not shaped or oriented as in the idealizations of simple
analytical or numerical models, and several types can coexist [111]. Some efforts have
been invested in the last few years to develop new simulation methodologies, partially
addressing the difficulties previously mentioned [31,45–47,115,116]. For example,
Aoyagi et al. [31] tackled the problem of slow equilibration of block-copolymer-based
TPEs by generating equilibrated configurations with SCFT and using them as input
for subsequent MD simulations. In this way they were able to study the deforma-
tion behavior of various triblock copolymer TPEs at the atomistic level. In another
work Terzis et al. [45–47] developed a promising simulation strategy, which connects
a coarse–grained description of entangled polymer networks with a kinetic Monte
Carlo algorithm, to model the fracture deformation of multiphase polymer materials
on the mesoscopic level of description. This approach allowed them to successfully
simulate the damage of a polypropylene/polyamide6 interface in real time. We will
demonstrate in the following that in the linear regime of mechanical perturbation
a fully atomistic simulation is not necessary and a continuum-based FE method is
enough to reproduce the linear mechanical properties within the experimentally avail-
able accuracy. By contrast, in case of the nonlinear regime, we will see that atomistic
MD simulation methodologies are not suitable to predict the equilibrium mechanical
properties of TPEs. This is due to the fact that block-copolymer-based TPEs relax their
stress on the order of microseconds to seconds using various relaxation channels, like
e.g. the self-retraction of dangling chains causing a power-law stress decay. In such
cases novel MSM techniques are needed, which permit to suitably incorporate their
relaxation mechanisms, taking place at different scales, and allow to model their slow
relaxation to equilibrium.

3.2 Linear mechanical properties

In the following let us first focus on the study of the nature of linear elasticity in block
copolymer-based TPEs, which is to date still not fully understood. To address this
issue, we make use in our work in Ref. [54] of analytical and numerical approaches on
the continuum-level of description, to investigate the linear elastic properties of a TPE
composed of symmetric poly-(styrene–butadiene–styrene) (SBS) triblock copolymers
forming PS phases with cylindrical morphology. Because of its technological rele-
vance, extensive efforts have been invested to study its mechanical properties exper-
imentally [55,117–119]. However, despite of that still only little is known about the
interplay of the core nanophases and the importance of the molecular details in the
material under deformation. For instance, a particularly interesting, as yet unsolved,
question is the contribution of the confined elastomeric phase to the overall mechanical
behavior and the question, whether an explicit resolution of the chains is necessary,
to describe the overall mechanical behavior in the linear regime. In preceding theo-
retical studies Arridge and Folkes [117,119] predicted a rather untypical Poisson’s
ratio of νP B = 0.37 for the confined PB phase by employing experimentally deter-
mined mechanical properties in conjunction with analytical continuum-based theories
of fiber-reinforcement. By contrast, in bulk rubber materials the Poisson’s ratio is
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typically known to be at ν= 0.5, which characterizes an incompressible medium.
Arridge and Folkes explained this unusual finding with the argument that the PB bridg-
ing chains between the PS blocks might be too short and not sufficiently entangled,
to exhibit typical rubber-like behavior. This would indicate that molecular character-
istics are relevant, to reproduce the mechanical behavior of this SBS material in the
linear regime of mechanical properties. In order to elucidate these interesting issues,
we make use of the FE route and investigate the effectiveness of the numerical contin-
uum-based approach in predicting its linear mechanical properties. We compare the
obtained results with results from experimental measurements and various analytical
continuum-based approaches, conceived for fiber-reinforced materials and employed
in a previous work by Arridge and Folkes [117]. A brief summary of the analytical
continuum-based methods, discussed in this section, is given in the following:

1. Variational method of Hashin and Hill [58,59] relies on an extension of the
approach of Hashin and Rosen [60]. It employs the energy theorems of classi-
cal elasticity, to obtain upper and lower bounds for the five elastic constants.
The minimum complementary energy theorem yields the lower bound, while the
minimum potential energy theorem yields the upper bound. Hill [59] showed by
formal and physical arguments that these are the best bounds that can be obtained
without taking into account molecular details.

2. Variational method of Rosen [61] is an improvement of the composite-cylinder-
assemblage model proposed by Hashin and Rosen [60]. This model incorporates
randomness in size and structure of the fibers and permits the derivation of simple
closed form expressions for the effective elastic moduli.

3. Exact-calculation method of Van Fo Fy and Savin [62] relies on Fil’shtinskii’s
approach for the treatment of fiber-composite materials [63]. It is based on the
solution of the equations of elastic equilibrium using an expansion in elliptic
functions, to solve the problem of hexagonal symmetry.

In this context it is also worth mentioning that the previous analytical theories have
originally been designed for composite materials with inclusions, embedded in ordi-
nary solid matrices with Poisson’s ratios <0.4, and that they rely on several more or
less controlled approximations. On the contrary, the FE route is accurate in principle,
i.e. in the limit of an infinite number of elements the predictions must become exact.
Within this approach, however, it is important to take into account that the rubbery
phase is nearly incompressible and, thus, possesses a Poisson’s ratio close to ν = 0.5.
A well-known difficulty in handling incompressible media with FE methods is that
the standard displacement formulation of elastic problems fails and, typically, leads to
highly oscillatory results, when the simple linear approximation with triangular ele-
ments is used [51]. In practice, the problems already arise when the material is nearly
incompressible at ν > 0.4. To overcome the difficulty, we employ the mixed finite-
element (MFE) approach using a two-field formulation, where the displacements and
the pressure are the free variables of the problem. Such a formulation allows the treat-
ment of fully compressible phases as well as nearly incompressible ones, as they occur
in the SBS TPE material considered herein.

Following the procedure of Arridge and Folkes [117], we adjust in our work in Ref.
[54] the bulk and shear moduli of the model under consideration to match specific
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Fig. 2 Simulation cell of SBS material with cylindrical morphology

compliances with the experiments and, then, compare the calculated values of the
remaining compliances among the various theories. The system under investigation is
a SBS copolymer material with a weight fraction of 25% of PS. It is characterized by a
hexagonally packed array of PS cylinders embedded in a matrix of PB, as visualized in
Fig. 2. From the figure, it can easily be concluded that the system possesses hexagonal
symmetry about the x3-axis, which implies that the compliance tensor is symmetric
about the leading diagonal and contains five independent compliance components S11,
S33, S12, S13 and S44. S11 and S22 are, respectively, the compliances along the x1- and
x2-directions, which are transverse to the fiber direction x3 and equal due to symme-
try. S33 is the component of the compliance tensor along the x3-direction, while S44
is a shear compliance directly related to the shear modulus GSBS of the model via
S44 = 1/GSBS . To test the reliability of the different theoretical approaches introduced
previously, we compare the components of the compliance tensor obtained with the
MFE method to the theoretical as well as experimental results presented by Arridge and
Folkes in Ref. [117]. In particular, we consider the orientation-dependent compliance

S′
33 = 1

Eθ
= S11 sin4 θ + (2S13 + S44) sin2 θ cos2 θ + S33 cos4 θ, (24)

where the angle θ is defined as shown in Fig. 2. In Fig. 3 we plot this quantity
as a function of the angle θ . We deduce from the figure that the numerical con-
tinuum-based method, based on the MFE approach, and the analytical
continuum-based method of Van Fo Fy and Savin provide reliable results, while other
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Fig. 3 S′
33-compliance yielded with the MFE method in comparison to the results obtained with the theories

of fiber-reinforcement and the experiment. The compliances S11 and S33 are adjusted to the experimental
results

analytical continuum-based theories are less valuable. As a consequence, we conclude
that the description at the continuum level is accurate and that no detailed molecular
information beyond the nanoscale morphology is needed to reproduce the experi-
mental data in the linear regime of mechanical properties within the accuracy of the
experimental measurements. Moreover, our investigation also indicates that the anom-
alous Poisson’s ratio of the PB phase of 0.37, determined by Arridge and Folkes and
attributed to molecular characteristics of the PB phase, is likely to be related to sample
end effects arising in their mechanical experiments. In opposition to their results we
show that the PB phase exhibits a typical nearly incompressible rubber-like behav-
ior. Finally, our work in Ref. [54] also unambiguously demonstrates that a concerted
improvement of experimental and theoretical techniques is necessary to gain a deeper
insight in the small-strain behavior of block-copolymer-based TPEs.

3.3 Nonlinear mechanical properties

To explore the nonlinear regime of mechanical properties, we introduce in the follow-
ing an analytical and numerical MSM approach. They are both employed to explain
and predict the peculiar stress relaxation behavior of the block-copolymer-based
TPE poly-(styrene–butadiene–styrene) (SIS) at long times, subjected to a nonlinear
extensional strain.

3.3.1 Analytical multiscale-modeling approach

Among many challenges, the prediction and understanding of the stress relaxation
behavior is of particular importance, because it provides informations about the molec-
ular mechanisms affecting the macroscopic properties of materials. In case of TPEs
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the stress relaxation behavior at long times has been studied in several experimental
investigations [120]. Chasset and Thirion [121] recognized that an excellent represen-
tation of their data at times t 	 τp is given by a power-law equation of the type

E(t) ≈ Et=∞
[
1 + (t/τp)

−γ ] , (25)

where E(t) is the isothermal relaxation modulus. The parameter Et=∞ is the equi-
librium modulus, while τp and γ are simple material parameters. In this context, it is
worth mentioning that the first two parameters depend on temperature and crosslink
density of the material [122–124], while the latter does not [125]. Ferry [122,123]
has speculated that the molecular processes associated with the power-law decay are
related to the relaxation of loops and free dangling chains, attached to the crosslinks
of the polymer network. He assumed that their relaxation is slow because of the pres-
ence of entanglements, which act as topological constraints. This picture has been
confirmed in the later theoretical studies of Curro and Pincus [122–124]. However,
from stress relaxation experiments with various TPEs it is well-known since decades
that, above a characteristic temperature T ∗, deviations from power-law behavior can
be observed after long times [20,120]. In the early 1970s Smith [120] concluded from
his experiments on SBS TPEs that the deviations are due to plastic flow and breakup
of the domains, which he presumed to be relatively soft at these temperatures. In a
recent work Hotta et al. [20] deduced from their experimental investigations that their
SIS TPEs undergo a stretched-exponential stress relaxation of the type

E(t) ≈ Eτs→∞ exp
[−(t/τs)

β
]
, (26)

where 0<β < 1 and τs are constants, while E(t) is the time-dependent effective
extensional modulus, defined through the stress–strain (σ–ε) convolution integral as

σ(t) =
∫

E(t − t ′)dε(t ′)
dt ′

dt ′. (27)

Moreover, Eτs→∞ is the modulus in the limit τs −→ ∞. They suggested that the
stretched-exponential stress decay could be the result of a readjustment of the net-
work, taking place via a rearrangement of the bridging chains. Relaxation phenomena,
obeying a stretched-exponential decay law, have been found in several relaxation pro-
cesses, such as e.g. in the relaxation of polymer glasses or gels [126]. Their occurrence
is generally attributed to the presence of a disorder or/and strong interactions in the
system, which lead to a superposition of different exponential processes or a super-
position of intrinsically non-exponential processes. For instance, in Ngai’s approach
[127] the relevant network units relax independently obeying an exponential relax-
ation at times t < tc, where tc represents a characteristic crossover time. At t > tc,
these units undergo a transition to a relaxation of stretched-exponential-type due to
strong interactions with neighboring units, causing a constrained motion and, there-
fore, a slowing down of the relaxation. In a recent paper Gurtovenko and Gotlib [126]
demonstrated that a stretched-exponential decay in an inhomogeneously crosslinked
network may also be the consequence of a broad size distribution of non-interacting
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network regions, each composed of a certain number of relaxing elements (crosslinks,
polydisperse chains, etc.). According to their approach, the phenomenon is the result
of structural heterogeneities in the polymer network, which cause a superposition of
the relaxation processes of the different domains in the network. These inhomogene-
ities may, e.g., arise by applying a mechanical deformation on polymer films or gels
[128,129]. In such cases agglomerations of crosslinks are created and form domains,
in which the crosslinks function as the relaxing elements and their respective numbers
determine the individual contributions of the domains to the overall relaxation process.

In our work in Ref. [12] we investigate the possibility of a stretched-exponential
decay behavior of the relaxation modulus in a homogeneously crosslinked network
with transient crosslinks, which forms domains of different number of crosslinks above
a characteristic temperature T ∗ but below the glass transition of the crosslinks, while
subjected to a nonlinear tensile deformation. To this end, we develop an analytical
MSM approach based on the approach of Gurtovenko and Gotlib, in which two differ-
ent types of relaxing elements of the network contribute to the stress relaxation of the
system, i.e. at short length and time scales the dangling chains and loops attached to
the crosslinks, while at larger scales the crosslinks themselves. To describe the model
in more detail, let us in the following regard a crosslinked polymer as an ensemble of
network regions (domains), each having a finite number n of crosslinks (relaxing ele-
ments). In Fig. 4 we show a sketch of the network domains in case of a SIS copolymer
material with spherical morphology in the range above the characteristic temperature

Fig. 4 Domains formed in a SIS copolymer material at temperatures above the characteristic temperature
T ∗, under a nonlinear tensile deformation
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T ∗ but below the glass transition temperature of the PS crosslinks. In this regime the
PS crosslinks are in a state of transient hardness, which causes that under the action of
a nonlinear deformation and thermal fluctuations some of the bridging chains can pull
out of the PS crosslinks. As a result, the system splits reversibly in crosslinks domains
of different sizes, whose boundaries are determined by the chain pullouts. Inside the
domains the network consists of a regular arrangement of PS spheres, interconnected
by bridging chains of PI. On the junctions, free dangling chains and loops are attached,
responsible for the slow power-law decay inside the domains at short time scales. As a
consequence, within each domain we suppose a power-law relaxation of the following
type:

E(t, T ) = Et=∞(T )
[

1 +
(

t

τ0(T )

)−γ]
, (28)

where τ0(T ) characterizes the minimal relaxation time of the domain [122,123]. Sim-
ilarly as in Eq. 25, the parameter γ > 0 represents the power-law exponent, which
can easily be obtained from short-time stress relaxation experiments or numerical
calculations. In our work in Ref. [12] we get the power-law coefficient γ from short-
time stress relaxation measurements at temperatures below T < T ∗ [20]. Since all the
domains, of crosslinks consist of the same type of relaxing elements and have iden-
tical internal architecture, the minimal relaxation time at a given temperature can be
considered to be similar for all the domains. For a time t >τmax (n, T ), it can now
easily be demonstrated that, due to the finite number of relaxing elements, the stress
relaxation of each domain goes over from the power-law relaxation in Eq. 28 into an
exponential-relaxation law of the following type:

E(t, T, n) ≈ Et=∞(T )
(

1 + γ

n

(
τmax (n, T )

t

)
exp

[
−
(

t

τmax (n, T )

)])
, (29)

where τmax (n, T ) separates network motions of different scales, i.e. the relaxation
of free dangling chains and loops at short times and the crosslinks at longer times.
Let us next focus on the long-time viscoelastic behavior of our crosslinked polymer
by determining the overall relaxation modulus of an ensemble of network domains,
each relaxing according to Eq. 29, at long times. In the following we will refer to
this model as the domain model. We suppose that the domains distinguish themselves
only by their different number of crosslinks, which are embedded in an effective vis-
cous medium common for all the domains, and that, due to thermal fluctuations, they
undergo reversible fluctuations in the domain sizes via a permanent network readjust-
ment. Moreover, we assume in a first approximation that the network domains relax
independently of each other with characteristic relaxation times and that the domain
sizes are distributed according to a Gaussian probability distribution function, derived
from the equilibrium fluctuation theorem [130]. It can easily be shown that, under
such conditions, the overall relaxation modulus of an ensemble of domains obeys a
stretched-exponential law of the following type:
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Fig. 5 Experimentally and theoretically determined effective extensional modulus versus time at different
temperatures for the SIS material with 14% PS, where PS spheres with cubic phase symmetry are embedded
in a PI matrix

E(t, T ) ≈ Et=∞(T )

⎡

⎣1 + C1

〈n〉
(

t

τ ∗(T )

) (σ−3)
(1/γ+2)

exp

(
−
(

t

τ ∗(T )

) 2
(1/γ+2)

)⎤

⎦ , (30)

where τ ∗(T ) is a characteristic relaxation time, determining the stretched-exponential
decay, and C1 is a constant.

To assess the usefulness of our analytical multiscale model, we make use of our
derived relaxation law in Eq. 30 by fitting it onto the experimental measurement
results of Hotta et al. [20]. In Fig. 5 we visualize the theoretically and experimen-
tally determined extensional modulus versus time at different temperatures obtained
for the SIS material with spherical PS morphology. We see that our domain-model
approach qualitatively correctly reproduces the experimental curves at all tempera-
tures. In particular, we observe that our approach correctly predicts the power-law
decay behavior, experimentally observed by Hotta et al. below a characteristic tem-
perature of T ∗ ≈ 303 K, by assuming a macroscopically large single-domain system
of crosslinks. With increasing temperature, our single-domain system splits reversibly
in a broad size distribution of domains and undergoes fluctuations in the domain sizes
via a permanent network readjustment. These domain size fluctuations are induced
by thermal fluctuations, causing fluctuations of stresses on a local scale. Regarded
from a molecular perspective, the stresses on the bridging chains decrease the acti-
vation barriers for the chain pullouts, making them in this way more likely. By fur-
ther taking into account that the relaxation moduli of the different domains obey
an exponential decay law inside the domains at long times according to Eq. 29 and
superimpose as an ensemble, our approach correctly predicts the stretched-exponential
relaxation law of Eq. 30, which governs the decay behavior of the overall system above
T ∗. The deviations observed at longer times announce the beginning of the terminal
relaxation zone. In this regime only the single domain still needs to relax, which
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possesses the largest number of relaxing elements and the longest relaxation time. As
a consequence, it determines the final relaxation behavior via the exponential given in
Eq. 29, and the overall relaxation modulus decays exponentially to zero, since at this
stage no superposition is possible anymore. We draw similar conclusions by applying
our model to TPEs with different composition and morphologies [12,131]. Further
experimental evidences for the process of chain pullout and the resulting readjustment
of the transient network under deformation are in particular the persistent change of
sample length after unloading and the recovery of the original sample size at long
times and/or upon annealing [20,132]. In conclusion, our analytical multiscale anal-
ysis confirms the importance of the chain-pullout mechanism in the stress relaxation
process of TPEs and demonstrates the involvement of multiple length and time scales
in their nonlinear mechanical behavior. Moreover, in the following we will see that it
also delivers important information about the nature of the glassy state in multiphase
and pure polymer materials. To investigate these issues in more detail, we introduce
in the subsequent sections a new glass transition theory as well as a numerical MSM
approach, which will provide a conclusive explanation for the transient hardness of the
PS crosslinks and elucidate the important role of the interphase regions in the stress
relaxation of these materials.

3.3.2 Numerical multiscale-modeling approach

Since the early 1970s, it is well-established that the properties of the core nano-
phases in block-copolymer-based TPEs considerably affect their overall mechanical
properties and, thus, their appropriate treatment is a crucial issue in the development
of new calculation tools. However, several recent experimental studies have clearly
demonstrated that, besides the correct handling of the core nanophases, an adequate
treatment of their interphases is another major challenge one has to face on the way of
target-oriented design of these materials. For instance, Diamant et al. [111] concluded
from their tensile tests with TPEs composed of various phase-separated styrenic block
copolymers that a linear or nonlinear mechanical perturbation leads to a stress con-
centration, localized in the interfacial region between hard and soft nanophases, and
that the impact of the interfacial region on the overall mechanical properties becomes
increasingly important with increasing mechanical perturbation imposed on the sys-
tem. Moreover, they found that, if the interphase is diffuse with a small composition
gradient, the domains are not in register and they fail individually, which explains that
macroscopic yielding cannot be observed in such systems. In contrast, if the compo-
sition profile has a sharp gradient, high local stress concentrations are generated at
the interphases, which causes that under a nonlinear strain all domains fail together
in a cascade. In a later study Henderson and Williams analyzed the issue of com-
position profiles at block copolymer interphases using experimental and theoretical
approaches [133,134]. They showed that phase-separated block copolymers generally
possess asymmetric interphases, caused by a partial enrichment through one of the
components. Morèse-Séguéla et al. [135] deduced from their DSC and 13C-NMR-
line-width measurements on low-molecular weight PS-PI diblock copolymers that at
the interphases there are strong dynamical interactions between the chain segments in
the soft and hard nanophases. They deduced that these interactions are responsible for
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the abnormal decrease of the glass transition temperature Tg at the interphases, instead
of the mixing of the two components assumed in previous works [136,137]. In a later
study Stoeppelmann et al. [138] have shown evidences for an asymmetric density and
motional profile of the chain segments at the interphases, using 2H-nuclear-magnetic-
resonance spectroscopy. Very recently, Huy et al. [139] proposed that the interphases
of tapered block copolymers can act as stress absorbers, which allow a more uniform
stress distribution. In conclusion, all these experimental works indicate that the study
of the structural–dynamical processes of the chain segments at the interphases are an
important issue and their consequences on the macroscopic physical properties need
to be better understood. To mimic their behavior, we have devised and applied a new
numerical MSM procedure based on the combination of a modified SCFT approach
and a kinetic Monte Carlo (KMC) method, which will be discussed in the following.

3.3.2.1 Structural–dynamical model To develop our numerical MSM approach pre-
sented in the subsequent section, we formulate and study in our work in Ref. [140]
a new glass transition theory, which is capable to describe the transient nature of the
PS crosslinks in styrenic TPEs above the characteristic temperature T ∗ and, thus, to
explain their peculiar stress relaxation spectrum as well as viscoelastic behavior. In
our analytical multiscale model, introduced in Sect. 3.3.1, we have assumed that the
crosslink domains are formed as a result of a structural–dynamical process, involv-
ing the readjustment or pulling of the PS blocks out the PS crosslinks. This process
is thermally activated in nature and implies a non-singular viscosity in the glassy
crosslinks, allowing a certain mobility of the PS blocks under the action of strain.
A further important implication of this process reveals itself in the transition from
Williams–Landel–Ferry (WLF) to Arrhenius behavior of the mechanical shift factors,
while passing through T ∗ from below. In Fig. 6 we show the logarithm of the shift

Fig. 6 Logarithm of the shift factor versus inverse temperature obtained from stress relaxation experiments
with different phase-separated styrenic triblock and diblock copolymer materials. Filled symbols with the
same color designate the respective Tg’s of the PS phases
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factor versus inverse temperature, obtained from various mechanical experiments with
different styrenic triblock TPEs. We compare these shift factors with values obtained
by Morton et al. [131], using a diblock material composed of poly-(styrene–butadiene)
(SB) copolymers. The transition in behavior of the shift factors from WLF- to Arrhe-
nius-type with decreasing inverse temperature can be explained in the following way.
At and above 1/T ∗, the PS crosslinks are fully rigid and the mechanical behavior of the
TPEs is dominated by the relaxation of the dangling chains, attached to the crosslinks,
and, thus, the shift factors obey a WLF equation with reference temperature Tr ,

ln aT = − C1(T − Tr )

C2 + T − Tr
, (31)

where the constants C1 ∝ 1/C2 and C2 = (Tr − T2). With decreasing inverse tem-
perature, we observe that the curves of the triblock TPEs progressively become linear,
approaching 1/Tg(P S). This behavior is well-reproduced by the Arrhenius law given
by

ln aT = − C3

RT
+ C4, (32)

where C3 and C4 are time-dependent constants. Moreover, we notice that in the linear
regime all triblock TPEs adopt the same slope, which indicates that at this stage phases
of the same chemical composition, i.e. the PS crosslinks, predominantly contribute to
the stress relaxation of the TPE materials. Next, further passing through the glass transi-
tion temperature of the PS crosslinks, leads to an additional crossover in behavior of the
shift factors from Arrhenius- to WLF-type, as can be deduced from Fig. 6 for the TPE
Kraton102. Afterwards, we compare in the same figure the triblock TPE results with the
ones from the diblock copolymer material. We observe that the diblock curve does not
show the Arrhenius-type behavior of the shift factors and conclude that the relaxation
of the diblock material is not dominated by a thermally activated process in the temper-
ature range under consideration. As a result, we infer from our theoretical investiga-
tion that a rate-determining thermally activated process determines the behavior of the
glassy crosslinks in styrenic triblock TPEs in the temperature range T ∗< T < Tg(P S),
which is in consistency with several experimental observations [20,120]. In our work in
Ref. [140] we find this process to be related to the thermally activated breaking and
re-forming of vdW bonds. Moreover, we identify the characteristic temperature T ∗ to
be identical with the second-order equilibrium transition temperature T2 of the glassy
PS phases, postulated by Gibbs and Di Mario in the 1950s to avert the entropy crisis
in the thermodynamic formulation of their glass theory [141–143]. Based on these
observations, we combine in our work in Ref. [140] the recently introduced theory for
glasses of Di Marzio and Yang [144] with the significant-structure theory of Eyring
and Ree [145,146], and formulate a new glass theory, which is capable to explain the
characteristics of the mechanical behavior of the TPE materials discussed previously.

To introduce our glass model developed in Ref. [140], let us consider that a glassy
polymer is the frozen state of an overcooled melt, which can spatially be decomposed
in elementary units containing polymer chains held together by transient vdW bonds
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[131]. In the following we will refer to these elementary units as activation units (AUs).
Moreover, we assume that the thermally activated process, taking place within the AUs,
is a yielding process, which may be described as a slip-shear motion involving the
breaking and re-forming of vdW bonds. It is assumed to be the primary mechanism of
deformation in the range of temperatures under investigation. In our theory for glasses
we make use of a trapping description to describe this micromechanical process, in
which escapes from deep energy wells provide the rate-determining steps. In Fig. 7
we show simplified sketches of the configuration space of our glass model in different
temperature ranges, accessible within a typical experimental timeframe. The points
represent configurations of AUs and the connecting lines represent allowed transitions
between the configurations. Configuration points belonging to the configurational sea
of shallow energy wells are denoted as N j and those belonging to the deep energy
wells as M j . The horizontal lines with rates α j for traveling to the right and β j+1 for
traveling to the left designate motions of the configuration point among the config-
urational sea of shallow wells. The vertical lines connect the configurational sea to
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Devitrification

Melt flow

Bj

βj+1

αj
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2<T=<Tg :

Melt flow

 T=T2:
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 T>T(a)
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Fig. 7 Sketches of the underlying glass model in different temperature ranges
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the deep wells by assuming that the length of each vertical line is proportional to the
potential energy depth of the well. The rate of escape from the deep wells is given
by A j and the rate of capture by B j . When the configuration point is in a deep well,
there is no motion. In Fig. 7a we show the configuration space of the glass-forming
material at a temperature somewhat above Tg . In this regime there are only a few
deep wells relative to the number of shallow wells, and the energy difference between
them is rather small. As a consequence, the configuration point migrates rapidly from
well to well within the configurational sea of shallow wells, and the system is able to
flow under the action of an external strain. In Fig. 7b the material is in the Arrhenius
regime, characterized by the range of temperatures T2< T ≤ Tg . In this situation a
configurational sea of shallow energy wells coexist with deep energy wells, and it is
assumed that the jumps out of the deep wells are the rate-determining steps. Under
these conditions, the material is solid-like, but flows very slowly under the action
of an external strain. If the configuration point is in one of the deep wells, it jumps
out of it after a long period of time and wanders within the configurational sea of
shallow wells, until it falls into another low-lying well. It then stays in this well for
another long period of time until it jumps out of it, repeating the process all over
again. The rate-determining step in this model is a simple vitrification/devitrification
process without flow of matter, caused by the formation/breaking of transient vdW
bonds. Motion involving flow of matter occurs only, when the configuration point has
escaped and cruises around in the configurational sea of shallow wells, until it falls
into another low-lying well. In Fig. 7c we see the material’s configuration space at
T2. At this temperature, there is only one configuration remaining, which is infinitely
deep in energy, and, thus, in this situation the trajectory is trapped in the deep well.
In this regime the material has no freedom to rearrange and its viscosity diverges.
Within this picture, the glass transition phenomenon can now be explained by the
appearance of non-equilibrium spatio-temporal fluctuations slightly above the glass
transition temperature, which lead to variations in the viscosity throughout the system
and induces the creation of solid clusters in the polymer melt. At Tg , the system pos-
sesses the critical fraction of solid clusters with respect to the fraction of the melt-like
regions, so that the solid clusters are able to connect to each other. This leads to the
formation of a continuous rigid backbone, causing a sudden increase in the viscosity,
and the system gets trapped in a quasi-equilibrium state by undergoing a percolation
transition. Experimental evidences for the spatio-temporal heterogeneities in vicinity
of Tg for glass-forming polymer melts have been accumulated over the past decade
using experimental techniques, such as NMR, fluorescence recovery, dielectric hole
burning or solvation dynamics [147,148]. By applying our glass model to explain the
mechanical behavior of the styrenic TPEs discussed previously, we conclude that the
occurrence of the Arrhenius regime relates to the large but only finite increase of the
viscosity in the PS crosslinks at their glass transition temperature Tg(PS), where a
singular behavior is predicted by other glass models instead. In contrast, our glass
model predicts a singular behavior of the viscosity at the characteristic transition tem-
perature T ∗, which we find to be identical with the equilibrium second-order transition
temperature T2, postulated by Gibbs and Di Mario in the 1950s [141–143].

Based on the glass model introduced previously, we propose in Ref. [131] an algo-
rithm for the simulation of the slip-shear process, involved in the glassy crosslinks of
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styrenic triblock TPE materials in the Arrhenius regime T2< T ≤ Tg(P S). It can be
formulated as the following two-step procedure:

1. an AU is selected in space and the vdW bonds, acting between the styrene mono-
mers within an AU, are cooperatively formed or broken through thermal activa-
tion, depending on whether the AU in its original configuration is in a melt-like or
solid state. The thermally activated process is efficiently mimicked with a kinetic
simulation algorithm;

2. under the action of strain, a subsequent step of flow motion of the chains within
the melt-like (rubbery) phase is incorporated into the algorithm via minimization
of the system’s free energy.

An implementation of this two-step procedure and applications to the SIS TPEs, dis-
cussed previously, will be presented in the subsequent section.

3.3.2.2 Combined KMC–SCFT algorithm To simulate the structural–dynamical model
introduced previously, we develop in Ref. [131] a numerical MSM approach, which

Calculate initial morphology
of copolymer melt

Freeze volume fractions + 
define AUës

Apply external strain on 
glass-rubber system

Minimize free energy + calculate
local stresses of glass-rubber system

Generate transition list of events + 
calculate corresponding rates

Pick event randomly + execute it with
probability given by Eq. (33)

Update time according to Eq. (34)

Calculate local and overall properties
+ check convergence

Main
loop

Initialization

standard

SCFT

KMC-
FD-SCFT

Fig. 8 Sketch showing the basic steps of the KMC–SCFT algorithm
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directly couples a mesoscale SCFT approach on the chain level of description with a
KMC algorithm, allowing to calculate the transition rates on the fly and to simulate
the evolution of the system in real time. Its basic steps are visualized in Fig. 8. In the
preliminary step we discretize the real space grid of the simulation cell in AUs and
determine the initial configuration of frozen AUs in the system. This is achieved by
minimizing the free energy of the copolymer melt and calculating its initial phase-sep-
arated structure using the standard SCFT approach [149], which provides initial fields
and volume fractions of the styrene and isoprene monomers. The procedure delivers
a fully relaxed and unstrained morphology, and the phases, designated as the glassy
phases, can now be frozen by fixing their respective volume fractions locally. In a sub-
sequent step an external strain is imposed and the partially frozen system is allowed
to relax to mechanical equilibrium by minimizing its free energy F̃ with a constrained
SCFT algorithm, which we call frozen-domain SCFT (FD-SCFT) algorithm. From this
new configuration, the local stresses, fields and volume fractions on the grid are deter-
mined. Next, the KMC procedure is started by generating the list of possible transition
events, n = 1, . . . , N , for the given configuration of AUs {λ} with stress distribution
{σ } and by calculating the transition rate, rn , of each event n. The transition events are
given by the AUs that can either be in a vitrified or devitrified state. In our approach
we only allow the boundary AUs at the glass–rubber interfaces to contribute to the
configuration space. AUs of the melt phase are allowed to undergo with a certain tran-
sition probability the vitrification process to become frozen AUs, while boundary AUs
of the glassy phase are allowed to melt with a certain probability. Having generated
the list of possible transition events, an event n is picked with probability

pn = rn∑N
i=1 ri

. (33)

The selected event is executed and time is advanced by

τ = ln(ξ)
∑N

i=1 ri
, (34)

where ξ represents a random number generated from a uniform distribution in the range
(0,1). Flow in the rubbery phase is allowed in a subsequent step through minimization
of the free energy, which permits the rearrangement of the polymer chains. From this
new configuration, the local and overall properties are determined. At this stage, it is
also important to mention that equilibration through minimization is performed after
each KMC step, since molecular rearrangements of the chains in the rubbery phase are
much faster than the relaxation processes, taking place in the glassy phase. Finally,
in the last step the convergence with respect to the local and overall properties are
checked.

To assess the usefulness of our combined KMC–SCFT approach, we perform cal-
culations for a lamellar TPE material composed of SIS triblock copolymers with
alternating glass–rubber phases, subjected to an extensional strain of 8.3%. For the
calculations, we use average volume fractions for the styrene and isoprene mono-
mers of φ̄S|I = 0.5, a Flory–Huggins parameter of χ = 0.2 and a polymerization index
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Fig. 9 Glass–rubber interface locations versus real time at various temperatures for a lamellar TPE mate-
rial composed of SIS triblock copolymers, determined with the combined KMC–SCFT algorithm. In the
calculations the following temperatures have been considered: T = 305 K (upper left), T = 320 K (upper
right), T = 350 K (lower left) and T = 380 K (lower right)

of N = 100, as well as a lattice spacing of dx = 0.1Rg . In Fig. 9 we visualize the
resulting fluctuations of both glass–rubber interfaces as a function of real time at 4
different temperatures, i.e. T = 305, 320, 350 and 380 K, where the first 3 tempera-
tures lie below Tg(PS). From the graphs, we deduce that the interfaces at the first 3
temperatures fluctuate about their equilibrium average values and that the magnitude
of the fluctuations, as well as the frequency of events, within a time interval grow
with increasing temperature. The latter behavior can easily be explained physically
by the increase of the transition rates for the processes of breaking and re-forming
of the vdW bonds in the glassy phase, as the kinetic energy in the system becomes
larger. At T = 380 K, we observe that the interface locations do touch each other
and that, as a consequence, the glassy phase of PS is completely molten above its
glass transition temperature. Next, in Fig. 10 we show the 1000-point moving aver-
ages of the interface locations versus the rescaled real time at different temperatures.
For a better visualization, we rescaled the time of the curves according to the fol-
lowing equation t ′ = At (T )t , where t ′ represents the rescaled time and At (T ) the
scaling factor. The scaling factors are At (T = 307 K )= 32, At (T = 310 K )= 135,
At (T = 320 K )= 375, At (T = 330 K )= 480 and At (T = 350 K )= 665. We recog-
nize that with increasing temperature the fluctuations become stronger and the glassy
phase between both interfaces in average becomes narrower. The latter behavior relates
to the fact that the glassy phase melts progressively due to the gradual change of the

123



396 J Math Chem (2009) 46:363–426

Fig. 10 1000-point moving averages of the interface locations versus rescaled real time at different tem-
peratures for a lamellar TPE material composed of SIS triblock copolymers, determined with the combined
KMC–SCFT algorithm

composition profile. These results are in consistency with a series of experimental
investigations from the late 1960s and early 1970s [120,150,151], from which it has
been inferred that with increasing temperature the PS crosslinks in styrenic TPEs
become softer. In these works a higher ductility of the PS glassy phase was reported at
lower temperatures, than predictable from the values of the bulk material. Moreover,
in a recent experimental study of Park et al. [152] thickness and composition depen-
dence of the glass transition temperature in thin random copolymer films was observed.
Next, we deduce from Fig. 10 that, approaching the glass transition temperature of the
crosslinks from below, there is an increased probability that the crosslinks melt for a
short period of time, due to fluctuations. We can particularly well conclude this from
both interface curves at a temperature of T = 350 K. We see that, in the time interval
between t ′ = 1 × 106 and t ′ = 2 × 106, the curves do almost touch each other and we
can safely predict that, if we would run the simulation for a longer time, instantaneous
melting, due to fluctuations, would take place. In the following we refer to this phe-
nomenon as fluctuational melting and emphasize that it has important consequences
for the mechanical properties of these materials. This is due to the fact that, in the
small time-frame the crosslinks are in the molten state, the chains can partially or
fully pull out of the crosslinks under the action of strain and in this way relax their
stress. In contrast, at a temperature of T = 305 K, we see that the interface curves are
far apart and fluctuate only slightly. In this situation it is very improbable that they will
coincide over some time interval and that fluctuational melting can take place, even
in a simulation run of infinite time. As a consequence, at this temperature the glassy
crosslinks remain rigid, and the material does not flow under the action of strain on a
computationally as well as experimentally accessible time-scale. Note that, due to the
restriction in computational time, we could not explicitly show such an instantaneous
melting event here, but we plan to do extensive investigations on this phenomenon in
a subsequent work. In Figs. 11 and 12 we show the resulting time-averaged internal
stress as a function of the grid number at 2 different temperatures, i.e. T = 305 K and
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Fig. 11 Time-averaged internal stress as a function of the grid number for a lamellar TPE material com-
posed of SIS triblock copolymers at T = 305 K, determined with the KMC–SCFT algorithm

Fig. 12 Time-averaged internal stress as a function of the grid number for a lamellar TPE material
composed of SIS triblock copolymers at T = 350 K, determined with the KMC–SCFT algorithm

T = 350 K respectively. We compare the curves obtained with increasing time to the
static internal stress configuration at t = 0, where no interphase dynamics is involved.
For a better visualization, we rescaled the static stress curve as σ ′ = σ/2. It is worth
mentioning at this stage that a stress concentration at static glass–rubber interfaces is
a phenomenon one should expect from a physical point of view. Since the seminal
work of Griffith in the early 1920s [153], it is well known that in materials with fail-
ures the stress is typically concentrated around the failure points. He recognized that,
when a nominal stress is applied to the external surface of a brittle material, the actual
stress at the flaw can be many times the value of the externally applied stress and it is
typically amplified at the flaw’s corner. In case of our glass–rubber system, calculated
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Fig. 13 Internal stress and volume fractions of the styrene and isoprene monomers as a function of the grid
number for a lamellar melt-like system composed of phase-separated SIS triblock copolymers, determined
with the standard SCFT algorithm

with the FD-SCFT algorithm, the stress concentration appears at the edges of sharp
and static glass–rubber interfaces, as a result of an external mechanical perturbation
applied to the system. By now further considering Fig. 11, we recognize that the time-
averaged stress profile at T = 305 K, computed with our KMC–SCFT algorithm, still
possesses a strong stress concentration at the interphases, even if the stress peaks are
significantly reduced compared to the static internal stress profile at t = 0. We con-
clude from this observation that the structural–dynamical process is rather ineffective
in reducing the stress concentrations at temperatures in vicinity to T ∗ = T2, which can
be explained by the low kinetic energy of the chain segments leading to an ineffective
stress distribution over the interphases. Next, by comparing the time-averaged stress
profile at T = 305 K with the corresponding curve at T = 350 K in Fig. 12, we deduce
that the stress peaks significantly decrease in magnitude with increasing temperature,
and that the double peaks at both interphases vanish and are replaced by single peaks.
We also notice by considering the stress profiles at different times that the interphase
dynamics causes a smoothing of the internal stress profile as the system evolves in
time, which is due to the partial cancellation of the sharp and static internal stress con-
figurations. At T = 350 K the importance of the interphase dynamics becomes most
apparent. The stress profile becomes almost similar in shape to the stress profile of the
melt-like SIS system, computed with the standard SCFT approach [149] and shown
in Fig. 13. Finally, it is also important to point out that our calculation results are sup-
ported by several theoretical and experimental investigations. The implausibility of
sharp interfaces at such small scales together with the presence of interphase regions
with mixed monomeric composition [154], motivated Leary and Williams to intro-
duce the thick-interface concept, to model such materials [155,156]. In a later work
Diamant et al. [111] deduced from their tensile tests on TPE samples that a linear
or nonlinear mechanical perturbation provides a stress concentration, localized in the
interfacial region between hard and soft nanophases. In a subsequent work Diamant
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and Williams [157] explained the temperature-dependence of the recovery behavior
of their TPE materials, subjected to a large nonlinear deformation, with the gradual
change of the degree of vitrification with monomeric composition. Moreover, Huy
et al. [139] concluded from their experiments with different tapered block-copoly-
mer-based TPEs that a gradual composition profile permits a more uniform stress
distribution at the interphases. They suggested that the interphases can be tuned to act
as efficient stress absorbers, reducing the extent of the stress transfer between the core
nanophases. In conclusion, from this study we retain that a suitable treatment of the
interphase dynamics and morphology is crucial to model these materials adequately.
Moreover, our investigation also provides an explanation and confirms the importance
of the chain-pullout mechanism in the stress relaxation and viscoelastic behavior of
block-copolymer-based TPEs.

4 Neutral and charged polymer solutions

Polymer solutions are polymers embedded in a solvent that are well-known to play a
vital role in nature and technology [158,159]. They can be composed of neutral poly-
mers, which possess no electrical charge or ionizable groups along their backbone
and can be soluble in water or not. Examples are polyethylene oxide, cellulose, sugar,
polyvinyl alcohol or polystyrene, among others. Their solutions have been extensively
investigated in the past using various experimental as well as theoretical techniques,
and their structures and properties are now well understood. Another type of polymer
solutions consists of charged polymers, so-called polyelectrolytes (PE s). They are
characterized by long polymeric chains, possessing a multitude of ionizable groups
along their backbone that may dissociate in a polar solvent by producing charged
species [160]. Among the most prominent examples are the nucleic acids DNA and
RNA, which are highly charged biopolyelectrolytes controlling the development and
functioning of living cells. In addition to their central role played in biological systems,
PE s find widespread use as solubilizing agents, phase separation agents and rheolog-
ical property modifiers in daily life and technological applications [161]. However,
despite of their importance and in contrast to neutral polymer solutions, PE solutions
are still only poorly understood [162,163]. This relates to the fact that their chemistry
and physics is influenced by many controlling parameters, such as molecular weight,
salt concentration, pH of the solution, etc. Another important characteristic of PE
systems is the coexistence of long-range Coulomb and short-range excluded volume
interactions. The presence of long-range interactions generally renders their simulation
particularly difficult, because of the need for computationally expensive techniques,
like the Ewald summation [25], for their appropriate treatment. Moreover, their often
highly polymeric nature introduces additional complexity by severely slowing down
their equilibration [34]. Finally, additional difficulties can occur in the computation
of open PE systems at lower temperatures in the range of physical interest, because
conventional grand canonical algorithms are known to become increasingly ineffi-
cient with growing interaction strength between the interacting monomers [37,90].
Since most PE systems, like e.g. living cells, are open systems where matter and heat
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exchange between the system and its surroundings does occur, this represents a major
drawback on the route towards understanding and predicting their physical properties.

4.1 Theory and simulation of polymer solutions—state of the art

Our good understanding of neutral polymers solutions is due to the fact that the range
of interactions between the monomers is much smaller than the scale determining the
physical properties of the solutions. As a result, fluctuations are reduced and the inter-
monomer interactions mainly affect adjustable prefactors, rather than the exponents of
the scaling laws. By contrast, PE solutions are controlled by an intricate interplay of
short- and long-range interactions. The screening of the electrostatic interactions, i.e.
the tendency of oppositely charged counterions to spatially arrange in such a way as
to render the effective interactions between any like-charged monomers short-ranged,
introduces yet another length scale in the problem, which may be comparable to the
chain size or to the correlation length. However, as we will discuss more extensively in
the further development, the distribution of counterions around the monomers limits
not only the range of their effective interactions, but also implicates the renormaliza-
tion of their charges as a result of counterion condensation. The screening process is
influenced by the local chain architecture, which indirectly affects the long-range part
of the interactions, and, therefore, has a nontrivial effect on the stiffness of the PE
chains.

Most currently available theoretical approaches for treating neutral polymer and PE
solutions are based on particle-based computer simulation techniques, like e.g. the con-
ventional molecular dynamics (MD) [32] or Monte Carlo (MC) methods [164,165].
However, their inherent spatial and temporal limitations prohibit their straightforward
application to systems with long polymer chains, characterized by slow equilibration
times [33,34], like e.g. biopolyelectrolytes [30] or block-PE solutions [166,167]. To
cope with these difficulties, we present in the following alternatives to the particle-
based simulation methods previously mentioned, which rely on the field-theoretic
formalism introduced in Chapter 2, and investigate their suitability in describing neu-
tral and charged polymer solutions.

4.2 Concepts and methodologies

4.2.1 Beyond mean field methods

Since the pioneering works of Edwards [83] and de Gennes [168], it has been well-
acknowledged that concepts originally introduced in quantum field theory (QFT) [94],
like e.g. functional integrals or renormalization group theory, have substantially con-
tributed to major breakthroughs in the field of polymer science [34,41–43,169]. For
instance, the groundbreaking idea of Edwards to use functional integral methods, to
investigate the physics of polymers and complex fluids, has led in the last few years to a
rapid development of analytical calculation and computer simulation tools, suitable for
describing structure and properties of a wide variety of important polymer systems,
including polymer melts, blends and block copolymers, etc. [41–44,131,169–176].
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This great success is, to a large extent, due to the introduction of the MF approxi-
mation, which has led to many important new physical insights into a broad class of
polymer materials at rather low computational cost. However, as we already mentioned
in Sect. 2.3, there are a multitude of cases for which the MF approximation provides
inaccurate or even qualitatively incorrect results, like e.g. neutral and charged polymer
solutions in dilute and semidilute concentration regimes [34]. In such situations the par-
tition function integral defining the field-theoretic model is not entirely dominated by
a single MF configuration and field configurations far from it can make important con-
tributions, which require the use of more sophisticated calculation techniques beyond
the MF level of approximation. One possibility to face the problem is to calculate
higher-order corrections to the 0th-order MF approximation. Tsonchev et al. devel-
oped a MF strategy, including leading-order (one-loop) fluctuation corrections, to gain
new insights into the physics of confined PE solutions [177]. However, in situations
where the MF approximation is bad many computationally demanding higher-order
corrections to the integral are necessary, to get the desired accuracy. Another possibil-
ity is to make use of MC algorithms and to sample the full partition function integral
in field-theoretic representation. However, in a recent work we demonstrated that MC
sampling in conjunction with the original field-theoretic representation is impracti-
cable due to the so-called numerical sign problem [178]. The difficulty is related to
the complex and oscillatory nature of the resulting distribution function, which causes
a bad statistical convergence of the functional integral averages of the desired ther-
modynamic and structural quantities. In such cases special analytical and numerical
techniques are necessary to accelerate their statistical convergence [29,178–180]. To
make the methodology amenable for computation, we proposed to shift the contour
of integration of the partition function integral through the homogeneous MF solution
using Cauchy’s integral theorem, which was previously successfully employed by Baer
et al. in field-theoretic electronic structure calculations [85]. We could demonstrate
that this technique provides a significant acceleration of the statistical convergence of
the functional integral averages in the MC sampling procedure [178]. Other promising
beyond MF simulation techniques have been developed recently, but they either still
lack the proof of correct statistical convergence [181,182] and/or still need to prove
their effectiveness on systems, where multiple MF solutions are important [180]. In
case of the complex Langevin (CL) method [183,184], it is well-known from the field
of lattice gauge theory that, due to the introduction of the complex field variable, the
general convergence proof is difficult and it is still lacking for general models [44].
Some convergence proofs have been presented, but they are only valid for the specific
models and conditions under consideration [185–188]. A rigorous general conver-
gence proof, like in case of MC, would be particularly crucial for slowly converging
sampling trajectories occurring in typical beyond MF applications, because in such
cases it is very expensive to check the converged results a posteriori against alternative
simulation or experimental results. Moreover, the CL method is known to be plagued
in many important cases by strong numerical instabilities or subtle ergodic behav-
ior [189]. For these reasons, it has never established itself as a standard simulation
algorithm and has essentially been abandoned in the field of lattice gauge theory [190].

123



402 J Math Chem (2009) 46:363–426

4.2.2 Renormalization concepts

An alternative theoretical tool to cope with strong fluctuation problems, arising in
SFTs, has been provided in the late 1940s by the concept of renormalization, which
has originally been devised to calculate functional integrals occurring in QFT [94,191].
In the latter field one normally makes use of a perturbation theory, to expand the func-
tional integrals in a power series with respect to the coupling parameters. Unfortu-
nately, generally most of the expansion terms turn out to be infinite, thereby rendering
such calculations impracticable [191]. A way to remove the infinities from QFT is to
make use of the concept of renormalization [192]. It mainly consists in replacing the
bare values of the coupling parameters, like e.g. electric charges or masses, by renor-
malized parameters and requiring that the physical quantities do not change under
such a transformation, which leads to finite terms in the perturbation expansion. A
simple physical picture of the procedure of renormalization can be drawn from the
example of a classical electrical charge Q, which is inserted into a polarizable medium
composed e.g. of simple electrolytes. At a distance r from the charge, due to the polar-
ization of the medium, its Coulomb field will effectively depend on a function Q(r),
i.e. the effective (renormalized) charge, instead of the bare electrical charge, Q [191].
At the beginning of the 1970s, Wilson further pioneered the power of renormaliza-
tion concepts by developing the formalism of renormalization group (RG) theory, to
investigate critical phenomena of statistical systems [193]. The RG theory makes use
of a series of RG transformations, each of which consists of a coarse–graining step
followed by a change of scale [34,92,194]. In case of statistical-mechanical problems
the steps are implemented by successively eliminating and rescaling the degrees of
freedom in the partition sum or integral that defines the model under consideration.
The main objective of a RG calculation is to study how parameters in the action
and, thus, the form and strength of the interactions among the fluctuating modes are
modified by the application of a RG transformation. De Gennes used this strategy
to establish an analogy between the behavior of the zero-component classical vector
model of ferromagnetism near the phase transition and the self-avoiding random walk
of a polymer chain of infinite length on a lattice, which enabled him to calculate the
polymer excluded volume exponents [168]. Both Wilson’s and de Gennes’s seminal
contributions in the field of critical phenomena and complex matter were awarded by
the Nobel prizes in physics of 1982 and 1991, respectively. Adapting this concept to
field-theoretic functional integrals, implies to study in a systematic way, how a SFT
model changes while eliminating and rescaling a certain number of degrees of free-
dom from the partition function integral [34,194]. An alternative approach is known
as the Hartree approximation or self-consistent one-loop approximation [93,195]. It
traditionally takes advantage of Gaussian fluctuation corrections to the 0th-order MF
contribution, to renormalize the model parameters and extract in a self-consistent way
the dominant length scale of the concentration fluctuations in critical concentration
regimes [34]. In a more recent work Efimov and Nogovitsin showed that an alterna-
tive renormalization technique originating from QFT, based on the concept of tadpole
renormalization, can be a very effective approach for computing functional integrals
arising in statistical mechanics of classical many-particle systems [196,197]. They
demonstrated that the main contributions to classical partition function integrals are
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provided by low-order tadpole-type Feynman diagrams, which account for divergent
contributions due to particle self-interactions. The renormalization procedure per-
formed in this approach effects on the self-interaction contribution of a charge (like
e.g. an electron or an ion), which results from the static polarization induced in the
vacuum due to the presence of that charge [198]. As evidenced by Efimov and Ganbold
in an earlier work [199,200], the procedure of tadpole renormalization can effectively
be employed to remove the corresponding divergences from the action of the original
field-theoretic representation of the partition function and leads to an alternative func-
tional integral representation, called the Gaussian equivalent representation (GER).
They showed on the example of the polaron problem that the procedure provides
functional integrals with significantly ameliorated approximation characteristics for
analytical perturbation calculations [199]. In subsequent works we applied the concept
of tadpole renormalization in conjunction with advanced MC techniques in the grand
canonical ensemble, and demonstrated that this approach efficiently accelerates the
statistical convergence of the desired ensemble averages of simple classical many-
particle systems [29,36,37,178,179]. In the following we present effective low-cost
approximation methods, based on the tadpole renormalization procedure, and show
that they deliver useful results for various polymer and PE solution models. For a
better understanding of this renormalization procedure, we derive in the subsequent
section the GER for a system of flexible polymer chains, using the method of Efimov
and Ganbold [199,200].

4.2.3 Gaussian equivalent representation and its 0th-order approximation

To derive the GER of the grand canonical partition function, let us consider the par-
tition function integral in Eq. 19 and perform the following shift of the integration
contour by invoking Cauchy’s integral theorem [36]

w(r) −→ w(r)+ iψGER(r), (35)

where ψGER(r) represents the shifting function of the partition function integral. We
then get

�(ξ, V, β) = γΦ̄ exp

[
1

2βV 2

∫
drdr′ψGER(r)Φ̄

−1
(r − r′)ψGER(r′)

]

×
∫

Dw exp

[
− 1

2βV 2

∫
drdr′w(r)Φ̄−1

(r − r′)w(r′)

− i

βV 2

∫
drdr′ψGER(r)Φ̄

−1
(r − r′)w(r′)+ ξQ[i(w + iψGER)]

]
,

(36)

where Q[i(w + iψGER)] is defined via Eq. 17. To derive the GER, we employ the
procedure of Efimov and Ganbold [199] and introduce the Gaussian measure DµΦ̄[w]
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related to the potential of mean force Φ̄,

DµΦ̄[w] = γΦ̄Dw exp

[
− 1

2βV 2

∫
drdr′w(r)Φ̄−1

(r − r′)w(r′)
]
, (37)

as well as the normal product with regard to this measure via the relations

: exp

⎡

⎣−i N

1∫

0

ds w(R(s))

⎤

⎦ :Φ̄ = exp

⎡

⎣−i N

1∫

0

ds w(R(s))

⎤

⎦ exp

(
1

2
βNΦ̄(0)

)
,

w(R(s))w(R′(s′)) = : w(R(s))w(R′(s′)) :Φ̄ +βΦ̄(R(s)− R′(s′)).
(38)

This implies that

∫
DµΦ̄[w] : exp

⎡

⎣−i N

1∫

0

ds w(R(s))

⎤

⎦ :Φ̄= 1. (39)

Inserting Eqs. 37 and 38 into Eq. 36, we obtain

�(ξ, V, β) = exp

[
1

2βV 2

∫
drdr′ψGER(r)Φ̄

−1
(r − r′)ψGER(r′)

]

×
∫

DµΦ̄[w] exp

[
− i

βV 2

∫
drdr′ψGER(r)Φ̄

−1
(r − r′)w(r′)

+ zQ[i(w + iψGER)]
]
, (40)

where

Q[i(w + iψGER)]

=
∫ DR exp

[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

]
: exp

[
− i N

∫ 1
0 ds w(R(s))

]
:Φ̄∫ DR exp [ −βU0[R]]

(41)

and the polymer activity z = ξ exp
(−β/2NΦ̄(0)

)
. The basic idea of the method of

Efimov and Ganbold [199] is to concentrate the main contribution to the partition func-
tion integral in a Gaussian measure related to a modified potential D(r) by employing
the concept of tadpole renormalization [199]. By considering Eq. 37, the new Gaussian
measure can be formulated as

DµD [σ ] = γD Dw exp

[
− 1

2βV 2

∫
drdr′w(r)D−1(r − r′)w(r′)

]
, (42)
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where the normalization constant γD is defined as in Eq. 21, but replacing the inter-
action potential Φ̄ with D. Moreover, the normal product according to this measure is
defined similarly as in Eq. 38, which implies that

: exp

⎡

⎣−i N

1∫

0

ds w(R(s))

⎤

⎦ :D= A−1 : exp

⎡

⎣−i N

1∫

0

ds w(R(s))

⎤

⎦ :Φ̄ (43)

with A = exp
( 1

2βN (Φ̄(0)− D(0))
)
. Introducing Eqs. 42 and 43 into Eq. 40, we

obtain for the grand canonical partition function

�(ξ, V, β) = γΦ̄

γD
exp

[
1

2βV 2

∫
drdr′ψGER(r)Φ̄

−1
(r − r′)ψGER(r′)

]

×
∫

DµD[w] exp [Wint ] , (44)

with

Wint = − 1

2βV 2

∫
drdr′w(r)

(
Φ̄

−1
(r − r′)− D−1(r − r′)

)
w(r′)

− i

βV 2

∫
drdr′ψGER(r)Φ̄

−1
(r − r′)w(r′)+ z AQ[i(w + iψGER)] (45)

and

Q[i(w + iψGER)]

=
∫ DR exp

[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

]
: exp

[
−i N

∫ 1
0 ds w(R(s))

]
:D

∫ DR exp [−βU0[R]] ,

(46)

while

γD

γΦ̄

=
∏

G

(
Φ̄(G)
D(G)

)1/2

. (47)

Afterwards, we expand in Eq. 46 the exponential term within the double dots in a
Taylor series up to second order and take into account the properties of the normal
product given in Eq. 38. We then obtain for the exponential term

: exp

⎡

⎣−i N

1∫

0

ds w(R(s))

⎤

⎦ :D = 1 − i N

1∫

0

w(R(s))ds

− N 2

2

1∫

0

1∫

0

: w(R(s))w(R(s′)) :D dsds′+ : exp2

⎡

⎣−i N

1∫

0

ds w(R(s))

⎤

⎦ :D,

(48)

123



406 J Math Chem (2009) 46:363–426

where the latter contribution contains all expansion terms beyond second order.
Inserting the previous expression into Eq. 46 and making use of the second relation
of Eq. 38, we can rewrite Eq. 45 as

Wint

= z A

∫ DR exp
[
−βU0[R]+N

∫ 1
0 ds ψGER(R(s))

]
: exp2

[
−i N

∫ 1
0 ds w(R(s))

]
:D

∫ DR exp [−βU0[R]]

+
⎧
⎨

⎩z A

∫ DR exp
[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

]

∫ DR exp [−βU0[R]]

− 1

2V 2

∫
drdr′ (Φ̄

−1
(r − r′)− D−1(r − r′)

)
D(r − r′)

⎫
⎬

⎭

−
⎧
⎨

⎩z Ai N

∫ DR exp
[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

] ∫ 1
0 w(R(s))ds

∫ DR exp [−βU0[R]]

+ i

βV 2

∫
drdr′ψGER(r)Φ̄

−1
(r − r′)w(r′)

⎫
⎬

⎭

− :
⎧
⎨

⎩z A
N 2

2

∫ DR exp
[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

] ∫ 1
0

∫ 1
0 w(R(s))w(R(s

′)) dsds′
∫ DR exp [−βU0[R]]

+ 1

2βV 2

∫
drdr′w(r)

(
Φ̄

−1
(r − r′)− D−1(r − r′)

)
w(r′)

⎫
⎬

⎭ :D . (49)

In order to concentrate the main contribution to the partition function integral in the
Gaussian measure DµD [w], we demand that the linear and quadratic terms in the
field w(r) in Eq. 49 vanish. These requirements lead to the so-called GER equations
in the following form:

z AN

∫ DR exp
[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

] ∫ 1
0 w(R(s))ds

∫ DR exp [−βU0[R]]
+ 1

βV 2

∫
drdr′ψGER(r)Φ̄

−1
(r − r′)w(r′) = 0,

z AN 2

∫ DR exp
[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

] ∫ 1
0

∫ 1
0 w(R(s))w(R(s

′)) dsds′
∫ DR exp [−βU0[R]]

+ 1

βV 2

∫
drdr′w(r)

(
Φ̄

−1
(r − r′)− D−1(r − r′)

)
w(r′) = 0, (50)

which can easily be reformulated as

ψGER(r) = −z ANβ

×
∫ DR exp

[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

] ∫ 1
0 Φ̄(R(s)− r)ds

∫ DR exp [−βU0[R]] ,
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D(r − r′) = Φ̄(r − r′)− z AN 2β

×
∫ DR exp

[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

] ∫ 1
0

∫ 1
0 D(R(s)− r)Φ̄(r′ − R(s′)) dsds′

∫ DR exp [−βU0[R]] .

(51)
In Fourier representation the previous equations give

ψGER(G) = −z ANβΦ̄(G)

×
∫ DR exp

[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

] ∫ 1
0 exp [iGR(s)] ds

∫ DR exp [−βU0[R]] ,

D(G) = Φ̄(G)− z AN 2βΦ̄(−G)D(G)

×
∫ DR exp

[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

] ∫ 1
0

∫ 1
0 exp

[
iG
(
R(s)− R(s′)

)]
dsds′

∫ DR exp [−βU0[R]] . (52)

As a result, we obtain a new exact field-theoretic representation of the grand canonical
partition function, namely its Gaussian equivalent representation GER,

�(ξ, V, β) = e−β�0
GER

∫
DµD[w]

× exp

⎡

⎣z A

∫ DR exp
[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

]
: exp2

[
−i N

∫ 1
0 ds w(R(s))

]
:D

∫ DR exp [−βU0[R]]

⎤

⎦ ,(53)

with the 0th-order GER approximation (GER0) of the grand canonical free energy

�0
GER = 1

β
ln
γD

γΦ̄

− 1

2β2V 2

∫
drdr′ψGER(r)Φ̄

−1
(r − r′)ψGER(r′)

+ 1

2βV 2

∫
drdr′ (Φ̄−1

(r − r′)− D−1(r − r′)
)

D(r − r′)

− z A

β

∫ DR exp
[
−βU0[R] + N

∫ 1
0 ds ψGER(R(s))

]

∫ DR exp [−βU0[R]] , (54)

where the ratio γD/γΦ̄ is given by Eq. 47. It is worth noting at this stage that the GER
provides an optimized representation of the partition function integral by increas-
ing the influence of the quadratic term in the action with respect to the oscillatory
interaction functional. As a consequence, the GER possesses better approximation
characteristics [89,201,202] and statistical convergence properties [36,178], than the
original field-theoretic representation defined in Eq. 19. In the following we further
assume that the shifting function is homogeneous and translation invariant, i.e.

ψGER(r) = ψGER(G = 0) = const., D(r, r′) = D(r − r′). (55)

Inserting Eq. 55 into Eq. 52, we can rewrite the GER equations as
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ψGER(G = 0) = −βNΦ̄(G = 0)ξ exp [−β/2N D(0)] exp
[
NψGER(G = 0)

]
,

D(G) = Φ̄(G)− z AN 2βΦ̄(−G)D(G) exp
[
NψGER(G = 0)

]

×
∫ DR exp [−βU0[R]] ∫ 1

0

∫ 1
0 exp

[
iG
(
R(s)− R(s′)

)]
dsds′

∫ DR exp [−βU0[R]] , (56)

with D(0) =∑G D(G) and A = exp
( 1

2βN (Φ̄(0)− D(0))
)
. Moreover, by inserting

Eq. 55 into Eq. 54, we obtain the GER0 approximation of the grand canonical free
energy as

�0
GER(ξ, V, β, N ) = 1

2β

∑

G

ln

(
Φ̄(G)
D(G)

)
− ψG E R 2(G=0)

2β2Φ̄(G=0)
+ NψGER(G=0)

2βΦ̄(G=0)
D(0)

− ξ
β

exp
[
NψGER(G = 0)

]
exp

[
−β

2
N D(0)

]
, (57)

where the GER potential D(G) and the shifting function ψGER(G = 0) are given by
Eq. 56, while the chemical potential related parameter ξ is provided by Eq. 22.

4.2.4 Concept of effective interactions

Another useful theoretical approach that greatly facilitates the computation of poly-
mer solutions is the concept of effective interactions between suitably chosen degrees
of freedom in the system under study [37,160,203]. The concept was recently found
particularly valuable in the calculation of structure and thermodynamics of a wide
variety of soft matter systems [204]. For instance, Louis et al. [203] have shown that
it provides accurate structural and thermodynamic information of polymer solutions
under good solvent conditions. To this end, they demonstrated that self-avoiding walk
polymer chains, immersed in a good solvent, form highly penetrable coils and that the
effective pair interactions between their center of mass can well be represented by a
repulsive Gaussian potential of the form [205,206]

Φ (r) = Φ(0) exp[−(r/R)2], (58)

where r = |r| is the distance between the interacting coils, while Φ(0) and R are the
energy scale and width of the Gaussian interaction, respectively. In their investigations
they demonstrated that this model accurately reproduces the structural and thermody-
namic properties of these systems over a large concentration range. In a recent work
Konieczky et al. could further show that it also reproduces the characteristic thermody-
namic features of solutions of weakly charged PE chains, forming highly penetrable
coils as in case of the neutral polymer solutions considered previously, and, thus,
constitutes a useful potential model to mimic their effective interactions [160]. By
direct comparison of computer simulation results and heat capacity measurements,
we have lately shown in our work in Ref. [33] that the Gaussian effective potential
also reproduces the characteristic thermodynamic features of micellar aggregates of
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ionic surfactants. These findings have recently found additional support through var-
ious theoretical and experimental investigations on similar systems [207,208]. In this
review we will make use of it, to demonstrate the effectiveness of our low-cost approx-
imation methods introduced previously. Note that in all our calculations, presented in
the following, we employed the system of reduced units (r.u.) that is natural for the
model [36]. In the subsequent part of this chapter we consider a model of screened Cou-
lomb type, describing the effective interactions between Debye–Hückel (DH) chains
[209]. Since the pioneering work of Derjaguin, Landau, Verwey and Overbeek (DLVO)
[210–212], it is well-established that the effective interactions between monomers of
PE s can well be described by a DH or Yukawa potential of the following form [209]:

Φ(r) = Φ0

(a

r

)
exp [−κr ] , (59)

where a is a typical inter-monomer distance and κ is the DH screening parameter. The
latter quantity governs the range of interactions and is a function of the density of the
screening ions as well as the dielectric properties of the solution [209]. The prefactor
Φ0 is proportional to the effective charges of the interacting monomers, and in case
of the DLVO potential includes the geometrical factor. We performed our investiga-
tions on this inter-monomer interaction model, because it allows to easily modify the
strength of the effective interactions between the interacting monomers, which, as
we demonstrated in our work in Ref. [37], is the primary cause for the fluctuation
problem of SFTs. Using both potential models discussed previously, we introduce in
Refs. [89,201,202] a new low-cost field-theoretic methodology beyond the MF level
of approximation, which can easily be adapted to sophisticated polymer models on
various levels of description. To assess its usefulness, we first develop and test it on the
computationally less expensive effective-particle model and perform calculations in
the range of parameters, where the Gaussian potential suitably describe the effective
interactions of neutral polymer or weakly charged PE coils in solution. In Ref. [82]
we then present applications of the new methodology to more sophisticated polymer
models on the chain-level of description. An outline of these applications will be given
in the following.

4.3 Solutions of neutral polymer coils

4.3.1 Grand canonical ensemble

In Ref. [201] we make use of the method of Efimov and Ganbold, to derive the GER
of the partition function integral for effective-particle field theories within the grand
canonical ensemble, and approximate it to lowest-order, which gives us its 0th-order
approximation GER0. Applying our approach to the example of solutions of neu-
tral polymer coils described by the effective polymer coil model given in Eq. 58, we
demonstrate that the GER0 approach provides a new low-cost approximation method
beyond the MF level, which provides a far more accurate 0th-order approximation of
the free energy as well as related thermodynamic and structural quantities, than the
MF approach. To show this, we compute important thermodynamic quantities using
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Fig. 14 Average density of polymer coils as a function of the chemical potential-related parameter B. All
error bars of the GCMC results are smaller than symbol size

Fig. 15 Average potential energy per average polymer coil number as a function of the chemical potential-
related parameter B. All error bars of the GCMC results are smaller than symbol size

our GER0 method and compare the delivered results to non-approximated ones gener-
ated with the grand canonical Monte Carlo (GCMC) technique of Norman and Filinov
[213]. The GCMC technique relies on the conventional Metropolis MC algorithm [25],
to perform the particle displacements. To simulate the particle exchange between the
physical system and the particle bath, it incorporates a supplementary particle crea-
tion/destruction step into the algorithm. In Figs. 14 and 15 we show the results obtained
for the average density of polymer coils and average potential energy per average
polymer coil number, calculated with the GER0, MF as well as GCMC method as
a function of the chemical potential-related parameter B [201]. We observe that the
MF results deviate increasingly with decreasing B-parameter compared to the GCMC
results, while the GER0 results remain accurate over the whole parameter range. The
discrepancy between the curves, obtained from the GER0 and MF method, grows
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dramatically in the low density regime for 〈ρ∗〉< 1.0. Thus, we conclude from both
figures and our work in Ref. [201] that the GER0 approach is an efficient novel
low-cost approximation method for grand canonical effective-particle SFTs of neutral
polymer solutions beyond the MF level of approximation, which, in contrast to the MF
approach, provides accurate results for important thermodynamic quantities over the
whole range of polymer coil densities, while requiring similar computational costs.

4.3.2 Canonical ensemble

In our work in Ref. [201] discussed in the previous section, we have introduced the
GER0 approach for treating SFTs within the grand canonical ensemble. However, a
significant amount of many-body problems of quantum or classical equilibrium sta-
tistical mechanics take place at fixed temperature and system size. In our work in
Ref. [202] we present a new SCFT for solving canonical ensemble problems over
the entire range of coupling parameters, based on the method of GER. We show that
the use of the GER procedure in the canonical ensemble case, in contrast to the grand
canonical ensemble case, requires the application of a specific transformation pro-
cedure to the basic field-theoretic representation of the canonical partition function
integral, which is inaccurate at high densities. To cope with the difficulty, we propose in
our work in Ref. [202] a modified GER procedure, to increase the accuracy of the GER0
approximation in the high density regime. We demonstrate the effectiveness of our
canonical ensemble approach on the same model system as discussed in the previous
section. In Fig. 16 we present the data obtained for the radial pair distribution function
at a reduced polymer coil density of ρ∗ = 0.4 for various inverse temperatures, using
the modified GER0 method. We compare these results to the MF approximation value
at g(r)= 1 as well as canonical simulation results, generated with the Nosé-Hoover

Fig. 16 Radial pair distribution function as a function of the distance of the polymer coils at a density of
ρ∗ = 0.4 for different inverse temperatures, obtained with the modified GER0 approximation, NVT-MD,
as well as MF approximation method. All error bars of the NVT-MD results are smaller than symbol size

123



412 J Math Chem (2009) 46:363–426

Fig. 17 Excess Helmholtz energy per polymer coil number as a function of the polymer coil density at an
inverse temperature of β∗ = 2.0, obtained with the modified GER0 approximation, GCMC, as well as MF
approximation method. All error bars of the GCMC results are smaller than symbol size

chain molecular dynamics (NVT-MD) method of Martyna et al. [214]. We see that the
modified GER0 results agree qualitatively well with the NVT-MD simulation results
in the regime β∗< 50. Moreover, we notice that the modified GER0 results deviate
increasingly from the NVT-MD results with increasing inverse temperature, which
is due to the fact that the higher-order corrections to the partition function integral
become increasingly important and, thus, need to be taken into account to achieve
a higher accuracy in the approximation. These higher-order corrections can e.g. be
computed using the modified GER formalism in conjunction with the Metropolis MC
algorithm [36,178]. Moreover, we observe that the modified GER0 curve atβ∗ = 152.9
is shifted, but reproduce the characteristic features of the non-approximated NVT-MD
curve. Finally, it is also worth considering that the curves, provided by the MF approx-
imation, are at g(r)= 1 over the whole range of inverse temperatures. This shows that
the modified GER0 approximation method introduces a tremendous amount of cor-
relation into the calculation, in contrast to the MF approach, which neither does take
into account any correlation nor does provide any information about the structure of
the system. Next, in Fig. 17 we show the excess Helmholtz energy per polymer coil
number as a function of the polymer coil density at an inverse temperature of β∗ = 2,
obtained from the same calculations. We generate the non-approximated comparative
free energy data with the GCMC technique of Norman and Filinov [213], since the
thermodynamic potential cannot be directly computed with the NVT-MD simulation
method. We observe that the modified GER0 results agree well with the ones com-
puted with the GCMC method, while the curve computed with the MF approximation
deviates increasingly with decreasing density. In conclusion, we retain from this study
that, analogously as in case of the grand canonical ensemble GER0 approach, the
canonical GER0 approach is significantly more accurate than the MF approxima-
tion over the entire range of polymer coil densities under consideration, while only
requiring a negligible amount of additional computational costs. As a consequence,
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we conclude that the GER0 approach is also an efficient low-cost approximation tech-
nique for calculating SFTs within the canonical ensemble.

4.4 Solutions of weakly charged polymers

Understanding the chemistry and physics of weakly charged polymer systems chal-
lenges scientists from a wide spectrum of research areas since many decades [160].
For their efficient numerical treatment, novel SCFT methodologies have emerged
recently and proven to provide useful results in case of PE solutions without added
salt in the regime of high monomer concentrations [163]. Unfortunately, as we already
mentioned in Sect. 2.3, the MF approximation, underlying SCFTs, is known to fail in
lower concentration regimes [34], which are of major relevance in most biological
and industrial applications. In our work in Ref. [89] we study the suitability of our
grand canonical GER0 approach for calculating prototypical open PE systems beyond
the MF level of approximation. Since from our work in Ref. [37] we know that the
origin of the fluctuation problem in SFTs is related to the strength of the effective
interactions between the interacting entities, we test the effectiveness of our method
on the example of the effective polymer coil model given in Eq. 58, mimicking in a
certain parameter range the effective interactions between weakly charged PE coils
[160], and the screened Coulomb model given in Eq. 59, describing the effective inter-
monomer interactions of DH chains. We investigate its ability with regard to the MF

Fig. 18 Grand canonical free energy and corresponding relative error as a function of the chemical potential-
related parameter B for the DH inter-monomer interaction model. All error bars of the GCMC results are
smaller than symbol size
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Fig. 19 Grand canonical free energy as a function of the temperature for the DH inter-monomer interaction
model. All error bars of the GCMC results are smaller than symbol size

approach, as well as GCMC method of Norman and Filinov [213], in providing accu-
rate thermodynamic information. In Fig. 18 we plot the grand canonical free energy
and the corresponding relative error of the DH inter-monomer interaction model as
a function of the chemical potential-related parameter B. We observe that the MF
results deviate increasingly with decreasing B-parameter with regard to the GCMC
results, while the GER0 results coincide well with the GCMC results over the whole
B-parameter range. The maximum discrepancy between the relative errors of the MF
and GER0 approximation methods in the small B-parameter range amounts to 65%.
Furthermore, it is worth pointing out that the GER0 curve of the free energy shows
minor deviations in the intermediate B-parameter range with a maximum deviation
at B = 10. This demonstrates that the accuracy of the GER0 approximation correlates
with the strength of the effective interactions, which is the largest in the intermediate
B-parameter range [37]. In contrast, we notice that the MF curve does not show this
behavior, because the MF approximation does not take into account any correlation at
all. Next, in Fig. 19 we visualize the grand canonical free energy for the same model
at a fixed B-parameter and volume as a function of temperature, computed with the
same methods as in the previous calculations. In addition, we show the location of the
liquid-solid phase transition, which only depends on the temperature, determined by
Robbins et al. [215] using microcanonical MD and lattice dynamics (LD) calculations.
From the figure, we deduce that the curve of the grand canonical free energy, computed
with the GER0 method, coincides well with the GCMC simulation data for tempera-
tures T ∗> 0.4. At smaller temperatures, the GER0 curve deviates increasingly, until it
undergoes a severe jump of several orders of magnitude at T ∗ ≈ 0.15. We note that the
temperature of the jump almost coincides with the temperature of the liquid-BCC phase
transition at T ∗ ≈ 0.08, determined through the MD and LD calculations previously
mentioned. Moreover, we also infer from the graph that at this temperature a discon-
tinuity in the first-order derivative of the grand canonical free energy with respect to
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temperature does appear, which is typical for a first-order phase transition. Since the
DH model for the range of potential parameters under consideration does not possess
a vapor–liquid transition [216], we conclude that the GER0 curve at this temperature
reproduces the characteristic features of the liquid-BCC phase transition of the model.
In contrast to that, the MF free energy curve shows a minimum and increases slightly
with decreasing temperature. Only a small discontinuity in the first-order derivative
of the grand canonical free energy with respect to temperature can be deduced from
the graph at a temperature of T ∗ ≈ 0.8. This value deviates by an order of magnitude
from the temperature of the liquid-BCC transition at T ∗ ≈ 0.08, obtained from the
MD and LD calculations. Furthermore, we note that the curve of the grand canonical
free energy, computed with the GCMC approach, does not exhibit any characteristic
of the liquid-BCC transition over the entire temperature range. We explain this with
the fact that at lower temperatures the kinetic energy of the particles is reduced and,
thus, the probability that a cavity is created or destroyed due to fluctuations becomes
smaller. Therefore, it becomes more unlikely that a particle can successfully be added
to or eliminated from the system, and, as a consequence, the GCMC algorithm fails
to provide useful results. Our conclusions concord well with the observations made
by Orkoulas and Panagiotopoulos [90], who found in case of ionic systems that grand
canonical algorithms become increasingly unreliable with decreasing temperature.
To overcome these difficulties, special strategies have been conceived to extend the
applicability of the GCMC technique to a wider range of parameters, like e.g. the
cavity-biased method of Mezei [217]. New developments essentially based on this
approach have recently provided some improved sampling efficiency [218]. However,
there is an obvious inherent limitation of the particle-based approaches in their exten-
sibility to the low temperature and/or high density regime, due to their underlying
particle exchange algorithm. Other methods make use of extended sampling schemes,
in which particles are gradually inserted into the physical system, such as e.g. the
grand canonical MD method of Cagin and Pettitt [219–221] or the method of Attard
[222]. However, these methods are unphysical in nature, because they do not sample
the true grand canonical distribution function. As a consequence, the convergence to
the correct thermodynamic averages can never be guaranteed, and these methods have
been found to provide wrong results in several important cases [223]. In conclusion,
we have demonstrated in our work in Ref. [89] on the example of prototypical PE
models that the GER0 approach is a reliable novel low-cost approximation method for
calculating SFTs of weakly charged polymer solutions beyond the MF level of approx-
imation. Its computational costs are comparable to the ones of the MF approach, but
they are much lower than the costs of the standard GCMC approach. The benefit with
respect to the GCMC approach becomes the more crucial the higher the degree of
sophistication of the polymer model, i.e. the more molecular details are incorporated
into the calculation. Moreover, we have also shown on the example of the screened
Coulomb model that the GER0 approach opens new perspectives to reliably determine
the phase boundaries of potential models with hard-core repulsion and to extend the
range of applicability of the grand canonical ensemble to dense liquid and solid phases
of sophisticated PE models.
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Fig. 20 Osmotic pressure of NaPSS solutions in the dilute and semidilute regime as a function of monom-
olar concentration without added salt at various molecular weights, obtained with the HR-GER0 approach
as well as the Odijk and de Gennes scaling theories in comparison to experimental measurements results.
Experimental data are taken from Oman [242], Vesnaver and Skerjanc [243], Chu and Marinsky [244], as
well as Reddy and Marinsky [245]

4.5 Solutions of flexible polyelectrolyte chains

In the Sects. 4.3 and 4.4 we discussed the GER0 approach for calculating polymer
SFTs beyond the MF level of approximation and presented applications to effec-
tive polymer coil models of neutral and weakly charged polymer solutions in high
concentration regimes, as well as to the DH inter-monomer interaction model. In
our work in Ref. [82] we extend the scope of applicability of the GER approach to
PE solutions in moderate to low concentration regimes, where the connectivity of
the polymer chains is explicitly taken into account. To this end, we develop a new
field-theoretic methodology, which combines the concept of tadpole renormalization
of the GER0 approach with the Hartree renormalization procedure and permits to
calculate SFTs of solutions composed of flexible neutral or charged polymer chains
over the entire range of monomer concentrations. We call this procedure the Hartree
renormalized GER0 (HR-GER0) approach and demonstrate its effectiveness on the
example of a system of flexible PE chains, where the monomers interact via a DLVO
type of pair potential involving excluded volume interactions [33]. With this approach,
we analytically derive suitable expressions for the osmotic pressure in all concentra-
tion regimes and test their reliability with regard to results obtained from alternative
theoretical approaches as well as experimental measurements, performed on sodium
poly-(styrene-sulfonate) (NaPSS) PE solutions without and with added salt over the
whole range of monomer concentrations. In Fig. 20 we plot the results obtained for the
osmotic pressure as a function of monomolar concentration in the dilute and semidi-
lute concentration range, generated with the HR-GER0 approach as well as the scaling
theories of Odijk and de Gennes [224–226]. We compare them to experimental data,
yielded from NaPSS solutions at various molecular weights. We observe that at low
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concentrations the power law with an exponent of 9/8, obtained with the HR-GER0
approach, fits the experimental data very well, while the scaling law of de Gennes
with an exponent of 1 deviates increasingly in the low concentration regime from
the experimental results with NaPSS of high molecular weight. Moreover, we recog-
nize that with increasing concentration there is an accelerated increase of the osmotic
pressure curve and that, at a critical concentration of C I CC

m ≈ 0.1 monomol/l, there is
a smooth crossover between the power law with exponent 9/8 to a power law with
exponent 4/3. We attribute this smooth crossover to the interplay of the phenom-
ena of screening of the monomer charges and self-contraction of the stretched PE
chains, leading to a change of the PE shapes. The effect of electrostatic screening of
the monomer charges is undertaken by the counterions, which form a diffuse dou-
ble layer to neutralize the monomer charges of opposite sign [227–229]. The size
of this double layer roughly obeys 1/κ , which implies that the size in the semidi-
lute regime is inversely proportional to the square root of the monomer concentration
[82]. This dependency of the size of the counterion cloud on concentration can be
explained by the fact that only a part of the counterions are condensed onto the sul-
fonate groups of the NaPSS chains, forming the so-called Stern layer [230]. The rest
of the counterions contribute as highly mobile ions to the diffuse double layer sur-
rounding each PE chain and, therefore, they are responsible for the concentration
dependence of the screening length κ in the semidilute regime. The size of this dou-
ble layer is mainly determined by the competition between the thermal motion of the
counterions, which tend to spread out or homogenize their distribution in order to
increase their entropy, and the electrostatic interactions, which attract the counterions
toward the monomer surfaces while repelling the monomers with charges of the same
sign [229]. This picture concords well with the findings made by Alexander et al.
in case of systems of charged colloids [231]. He discovered that potential models
of screened Coulomb type can be applied to a wide range of concentrations, if the
bare macroion (monomer) charge is suitably renormalized [231,232]. The physical
concept behind this approach relies on the assumption that counterions can tightly
bind (condense) onto the fixed surface charges of the macroions and contribute in this
way to reduce their bare values, resulting in smaller effective macroion charges. The
counterions undergo this condensation process, until the charge densities adjacent to
the macroions are reduced below a certain critical threshold [233]. This process is
also known as the phenomenon of counterion condensation and has led in the late
1960s to the development of the counterion condensation theory for PE solutions by
Manning [233]. However, in case of PE solutions this effect goes along with the phe-
nomenon of contraction of the PE chains onto themselves as the concentration of the
monomers grows, leading to a rapid increase of the effective monomer charges and
interactions. We attribute the change of power law from exponent 9/8 to 4/3 at the
critical concentration CICC

m to a crossover from outer-chain contraction (OCC) to inner-
chain contraction (ICC), caused by changing bending properties along the PE chains
due to non-uniform counterion condensation. As recently shown by Rubinstein et al.
[234] with computer simulations of dilute PE solutions, the center parts of the chains
experience strong stretching due to strong Coulomb repulsion of loosely attached
counter-ions, which function as a supporting corset. In contrast, the counterions at the
outer parts of the chains are attached more tightly, leading to a strong screening of
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Fig. 21 Osmotic pressure of NaPSS solutions as a function of monomolar concentration over the entire
concentration range without added salt and at various molecular weights, obtained with the HR-GER0
approach as well as with the MD method by Stevens and Kremer [232] in comparison to experimental
measurements results. Experimental data are taken from Oman [242], Vesnaver and Skerjanc [243], Chu
and Marinsky [244], as well as Reddy and Marinsky [245]

the inter-monomer interactions. As a consequence, at the chain ends the tendency of
forming a kink is favored over the tendency of elongation due to Coulomb repulsion.
This causes that the outer chain segments are somewhat more flexible than the inner
chain segments and their probability to contract grows with increasing concentration.
Similarly, Stevens and Kremer [235] observed in their MD simulations that, due to
counterion condensation, the chains contract significantly before they overlap, forming
PE s with horseshoe shape. They argued that the fraction of condensed counterions
increases with polymer concentration, leading to a decrease of the effective charges
on the chains and causing in this way their contraction. Moreover, they pointed out
that the two effects of non-uniform counterion condensation and counterion-medi-
ated chain self-contraction were in the past always ignored in simple scaling theo-
ries and, thus, may question their validity. In our HR-GER0 approach these effects
are taken into account by renormalizing the monomer charge number in a suitable
way. This causes that, besides the length scale associated with the strength of the
Coulomb interaction, additional length scales, associated with the both effects pre-
viously mentioned, are introduced in our HR-GER0 approach. Next, in Fig. 21 we
show the osmotic pressure as a function of the monomolar concentration for solu-
tions of NaPSS PE s at different molecular weights over the whole concentration
range, obtained from the HR-GER0 approach as well as experimental measurements,
in comparison to the MD simulation results of Stevens and Kremer [232]. The lat-
ter authors modeled the PE chains as freely-jointed bead-spring chains, where the
charged monomers interacted via the DH pair potential, while the solvent was mod-
eled by a dielectric background. The simulations were performed with chain lengths
of N = 32 and N = 64 beads, as well as at low densities with a chain length of
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N = 128 beads, while the number of DH chains in the simulation cell was either
8 or 16. Note that we mapped the MD simulation results onto systems of NaPSS
PE s in water, making use of the procedure proposed by Stevens and Kremer [232].
We see that, similarly to the MD simulation method, the HR-GER0 approach repro-
duces the experimental osmotic pressure curves well over the entire concentration
range. We recognize that with increasing concentration the experimental data concords
increasingly well with the power law with exponent 7/3, obtained using the HR-GER0
approach. A good match is achieved at concentrations starting from COVP

m ≈ 2 mono-
mol/l, which represents the critical overlap (OVP) concentration of the crossover from
the semidilute to the concentrated regime of the NaPSS PE solutions. In the high
concentration range the counterions can be assumed to be almost entirely condensed
onto the charged surfaces of the monomers, thereby screening their interactions effec-
tively. As a consequence, in this regime the inter-monomer interactions are short-
ranged and the screening length becomes independent of concentration. Due to the
effective and almost uniform screening of the counterions, the chains are entirely
collapsed onto themselves and form polymer coils, as in case of neutral polymer
solutions [34]. This is reflected by a similar scaling exponent of 9/4, derived for the
latter case by des Cloizeaux [236,237]. At the critical overlap concentration COVP

m , the
screened PE coils pack to fill the entire space with unit volume fraction and they can
be assumed to overlap with each other. By contrast, in the low concentration range,
we recognize that the experimental curves, resulting from solutions of NaPSS PE s of
different molecular weights, show a considerable scatter. This is a manifestation of
the molecular weight dependence of the osmotic pressure in the dilute concentration
regime, reflecting the polymeric nature of the PE chains [162]. Moreover, we visual-
ize in the graph the two curves derived for the dilute and semidilute regime, obeying,
respectively, a power law with exponent 9/8 and 4/3. We observe that the experimental
curves with the NaPSS PE s of intermediate molecular weights of M = 1.2×105 g/mol
and M = 3.05×105 g/mol obey the theoretically derived power law with exponent 9/8
very well. In contrast, the experimental curve of the low-molecular weight NaPSS PE s
with M = 7 × 104 g/mol deviates from the power law with exponent 9/8, while being
more close to the power law with exponent 1 representing ideal behavior. Thus, we
deduce from the graph that the HR-GER0 approach correctly reproduces the molecu-
lar weight dependence of NaPSS solutions in the dilute concentration regime and that
the ideal behavior is recovered in the limit of short chain lengths. Finally, it is also
worth emphasizing that, in contrast to field-theoretic approaches, MD simulations at
higher concentrations can only deal with PE s of short chain lengths. This severely lim-
its the scope of application of the MD methodology, since systems of biological and
technological interest generally consist of long PE chains, possessing prohibitively
long equilibration times [34]. In conclusion, we retain from our study in Ref. [82]
that the HR-GER0 approach provides useful osmotic pressure results over the entire
range of monomer concentrations by taking advantage of effective renormalization
procedures and, in contrast to conventional particle-based simulation methods, also
permits to deliver useful results for PE systems with long polymer chains in non-dilute
concentration regimes.
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5 Quantum systems

Devising theoretical tools for the treatment of structures and dynamical phenomena
on the quantum level of description is of particular importance for the development of
functionalized polymer materials, like e.g. polymer-based (semi-)conductors [238] or
optoelectronic devices [104]. As already outlined in the Sect. 1.1.1, various particle-
based quantum-chemical techniques have been developed in recent years, increasing
the scope of application of the quantum level significantly. However, their useful-
ness for polymer systems is generally highly limited, due to their large system sizes
and restrictions in computational power [22]. In case of functional-integral-based
techniques a lot of efforts have been invested in Feynman’s path-integral approach
[87]. However, no computationally tractable method for investigating realistic sys-
tems could be developed up to now within this methodology. This relates to severe
numerical difficulties caused by strong oscillations of the complex integrand at mod-
erate to long propagation times [87]. Very recently, Rom et al. [84,85] introduced
a promising novel quantum MC method for performing highly correlated electronic-
structure calculations, relying on the field-theoretic formalism. It has successfully been
employed to calculate ground-state and low-lying excited states of various atoms and
small molecules [86]. However, its application to larger systems has been hindered
by a deteriorated statistical convergence [85]. To cope with these difficulties, we have
developed in the works introduced subsequently a novel field-theoretic approach for
treating quantum-statistical and quantum-dynamical many-body problems, based on
the concept of tadpole renormalization. In our publication in Ref. [87] we derive a new
field-theoretic representation of the real-time many-body evolution operator, which
possesses better approximation characteristics and sampling properties for real-time
quantum-dynamical calculations than the original field-theoretic formulation. For this,
we make use of a generalized version of the method of Efimov and Ganbold [199],
which efficiently eliminates the main divergences from the action caused by the self-
interaction contributions of the electrons. In our publication in Ref. [86] we derive
a novel field-theoretic representation of the imaginary-time evolution operator, using
a similar procedure as in the previous case. The resulting SFT permits to deal with
statistical many-body problems on the quantum level of description, as occurring in
a multitude of polymer applications. In both cases we demonstrate that in the limit
of small timesteps the GER goes over in the so-called MF representation, originally
proposed by Rom et al. for electronic-structure calculations [84,85].

6 Conclusions and outlook

In conclusion, we have shown in this review that the field-theoretic formalism is an
effective theoretical tool, to solve the multiple length and time scale problems arising
in the calculation of the physical properties of a multitude of polymer materials. It
possesses the advantageous property that it allows to treat all length scales, spanning
from the quantum to the continuum scale, within an unified theoretical framework.
As we demonstrated on the example of the coupling of the mesoscopic and con-
tinuum scale, this specific feature constitutes a crucial advantage of field-theoretic
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approaches versus particle-based simulation methodologies for connecting different
levels. Another major benefit relates to their favorable approximation characteristics,
which permit to devise efficient coarse–graining strategies for evaluating sophisticated
polymer problems in a reliable way. To show this, we have presented novel low-cost
approximation strategies beyond the MF level of approximation using effective renor-
malization concepts, originating from quantum field theories, and demonstrated their
usefulness in the calculation of structural and physical properties of several polymer
systems, described at various levels of description.

The goal of our future research activity is to adapt and apply the multiscale model-
ing techniques described in this review, to investigate the structure–property relation-
ship of various inhomogeneous polymer and complex fluid materials, subjected to a
nonlinear external perturbation. A particular emphasis will be put on the study of the
effect of nanoscale structures and phenomena on the properties of functionalized poly-
mer materials, like the ones occurring in the area of polymer optoelectronics [100],
complex foods [239,240] or biomaterials [30]. Such systems characteristically exhibit
a hierarchy of different length and time scales, which are correlated with each other
and decisively influence the nonlinear material properties. Since they are generally
strongly influenced by fluctuations, we will in addition concentrate on further devel-
oping efficient low-cost approximation methods beyond the MF level of approximation
for calculating the respective statistical field theories in an effective way.
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